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Abstract

Accurate and reliable prediction of macromolecular structures, Polypeptide Structure Prediction (PSP),
has eluded researchers for nearly 40 years. Prediction via energy minimization assumes the native confor-
mation of the protein has the globally minimal energy potential. However an exhaustive search is impossible
since for molecules of normal size, the size of the search space exceeds the accepted size of the universe (1080,
the number of stable elementary particles). Domain knowledge sources, such as the Brookhaven Protein
Data Base and the Dictionary of Protein Secondary Structures in Germany, can be mined for constraints
that limit the search space and possibly result in an e�cient stochastic algorithm for PSP.

Genetic algorithms (GAs) are stochastic, population based, search algorithms of polynomial (P) time
complexity that can produce semi-optimal solutions for problems of nondeterministic polynomial (NP) time
complexity such as PSP. This study is an engineering investigating into performance (e�ectiveness & e�-
ciency) gains from parallel and real-valued GAs with respect to PSP.

For PSP, the simple GA has previously been enhanced with local search techniques improving e�ec-
tiveness. At the same time, run time increases by two orders of magnitude. A \farming model" parallel
hybrid GA (PHGA) which preserves the e�ectiveness of the serial algorithm but with substantial speed up is
designed and implemented. Portability across distributed and massively parallel platforms is accomplished
with the Message Passing Interface (MPI) communications standard.

A real-valued GA system, the REal-valuedGenetic Algorithm, Limited by constraints (REGAL), which
exploits domain knowledge, is also designed and implemented. It integrates Michalewicz's real-valued GA
for numerical optimization, AFIT/WL's own CHARMM energy model implementation and molecule model
data structures, and constraint sets derived from the biochemistry domain. Results with derived sets of
constraints are presented. Experiments with the pentapeptide Met-enkephalin have identi�ed conformers
with lower energies (CHARMM) than the accepted optimal conformer (Scheraga, et al), -31.98 vs -28.96
kcals/mol. Analysis of exogenous parameters yields additional insight into performance.

A parallel version, Para-REGAL, an \island model" modi�ed to allow di�erent active constraints in
the distributed subpopulations is also designed and implemented. Results examining novel concepts of
Probability of Migration and Probability of Complete Migration are presented.

xiv



REFINED GENETIC ALGORITHMS

FOR

POLYPEPTIDE STRUCTURE PREDICTION

I. Introduction

Most substantial problems cannot be mapped directly into a manageable, or tractable, computational

model. Workable solutions to these problems necessarily involve some degree of abstraction. In Newtonian

physics for instance, one might assume a frictionless pulley. Here, the problem is divided into a tractable por-

tion with signi�cant contributions, and an intractable portion that can be \safely" ignored. What constitutes

an answer that is \close enough" and \safe" is problem speci�c. Tractable solution implementations involv-

ing digital computers are by necessity discrete, whereas many problem domains are continuous. Therefore,

when a computer is used to solve a problem, some level of granularity must be accepted.

Even when there exists an acceptable level of granularity, it is not always possible to search for an

optimal solution. The size of the solution space is roughly the average number of values the variables can

assume raised by the number of degrees of freedom. Even with a linear growth in number of variables, the

growth in solution space is exponential. The traditional search method of evaluating every possible solution

cannot be done in a reasonable period of time, even with the fastest computers available today or in the

future.

Thus, many classes of problems must be engineered to strike a balance between �delity and solvabil-

ity. This thesis investigation examines this issue with respect to one such problem, Polypeptide Structure

Prediction.

1.1 Protein Folding Problem / Polypeptide Structure Prediction

The Protein Folding Problem (PFP) predicts the path taken by a protein (or polypeptide) transitioning

from an unfolded (or denatured) state to its folded (or native) state (or conformation). A general solution

to the protein folding problem has eluded researchers for more than 30 years (70). Polypeptides Structure

Prediction (PSP) is a related problem. The essence of PSP is to predict the compact, three dimensional

shape of a protein as it would exist in nature, without regard to path taken. This compact shape is called

the native conformation.1

PSP � PFP (1)

1The native conformation determines the protein's biological functions.
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Equation 1 demonstrates the relationship between the two problem domains.

1.1.1 Background. A protein is a linear polymer molecule, a chain of tens to thousands of monomer

units strung together like beads in a necklace. The monomers are the 20 naturally occurring amino acids

(8). Each amino acid consists of a back plane formed by a single nitrogen, alpha-carbon (C�), carbon,

oxygen, and hydrogen atoms, and a distinguishing side chain (27). The backbone of a protein is a sequence

of these back planes linked via peptide bonds. Because they exhibit this bond, proteins are a subset of

molecules called polypeptides. In this document the term polypeptide, or just peptide, and protein is used

interchangeably. In fact, one de�nition of a protein is a polypeptide with 50 or more amino acids. When

an amino acid molecule joins with others to form a polypeptide, it splits out a water molecule (H2O). The

amino acid without the oxygen and hydrogen atoms is called a residue. In this document, the term "residue"

refers to an amino acid in a sequence forming a particular polypeptide.

The primary structure is the sequence of amino acids making up a protein. The primary structure

is easily determined using laboratory methods (27). In addition, the secondary structure is the shape of

local sections of the primary structure. Common secondary structures include alpha-helices, beta-sheets,

and random coils. These, too, are easily determined by sequence analysis and homology techniques. The

large-scale architecture of a protein (how the helices, sheets, and other secondary structures �t together)

is the tertiary structure. Determining this structure experimentally is very di�cult and time consuming.

First a crystalline structure must be grown. The crystal is then examined using x-ray crystallography or

multidimensional nuclear magnetic resonance. Years are required to identify the conformation of a single

protein (35). For comparison, the count of identi�ed protein sequences is in the tens of thousands while

only a few thousand conformations had been identi�ed. Of these, only about 400 conformations had been

determined to the level of atomic resolution (8). In addition, because the crystalline structure is itself an

abstraction of the molecule from it native environment, it may not be the naturally occurring structure.

1.1.2 Importance. The PFP and PSP are fundamental problems in biophysical science (8), and

are considered Grand Challenges. Grand Challenges are fundamental problems in science and engineering

with broad economic and scienti�c impact whose solutions can be advanced by applying high performance

computing techniques and resources (12). Understanding the PFP and PSP are of great importance for

biomedicine: in designing novel proteins, in decoding the information obtained from the Human Genome

Project (91), in designing new drugs, and in trying to understand the thousands of protein sequences being

discovered everyday in biotechnology labs.

E�cient PSP techniques are also of great interest to the Materials Directorate of the USAF Wright

Laboratory (WL). These techniques expedite their e�orts to develop new materials. They intend to develop
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materials with non-linear optical properties for the USAF. In particular, they plan to develop chromophore-

substituted polymer chains with controlled optical properties, so-called smart �lters or optical switches (93).

1.1.3 Methods for Polypeptide Structures Prediction. There are currently two basic techniques for

predicting the tertiary structure of proteins: energy minimization and molecular dynamics. Using energy

minimization, ab initio methods calculate the energy exactly, semi-empirical methods neglect some of the

non-dominating terms, and force-�eld methods only account for pairwise interactions between atoms. Calcu-

lating a single energy value for these methods takes O(n5), O(n4), and O(n2) time respectively (71). Also, it

is assumed the native conformation is the least energy conformer corresponding to the global minimumof the

energy function (or model). With this assumption, the objective becomes a search for the conformation with

the least potential energy. This can be visualized for a rather trivial case of a n-butane molecule, Figure 1,

by following the energy surface as the molecule is rotated about the bond between the central carbon atoms.

Figure 1. Potential energy trace for various conformers of n-butane
Adapted from Theory and Problems of Organic Chemistry by Meislich and others (76).

Molecular dynamics attempts to simulate the folding process. However, the time steps required for this

simulation are on the order of one femtosecond (10�15 sec). Today's computers only allow us to simulate

a few hundred picoseconds (10�12 sec), while the actual folding processes take at least microseconds to

complete (71:5{7).
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1.1.4 Growth of Complexity. There is an exponential growth in the solution space as the size of

the molecule increases. First, there is a linear growth in the degrees of freedom (DOF) per atom added

to the molecule. Each atom is treated as a symmetrical point mass, therefore, the three rotational DOF

are ignored. This leaves the three translational DOF in the x, y and z planes. Also, the six DOF for the

molecule as a whole are ignored since the focus is the molecule's internal interactions. Thus, there are j3n�6j

DOF where n is the number of atoms.2 This leads to the size of the solution space: [number of values the

variables can assume]j3n�6j. Rarely is a search space of this magnitude conquered by classical methods, thus

the interest in evolutionary and in particular genetic algorithms. This has been but a brief introduction to

the biochemistry problems of Protein Folding and Structure Prediction. Additional information is provided

in the Current Issues Chapter (Section 2.3), and Appendix A.

1.2 Genetic Algorithms

The Air Force Institute of Technology (AFIT) has a long history of research into computational science

and engineering with particular interest in search algorithms and parallel and distributed computation. A

Genetic Algorithm (GA) is characterized by implicit parallelism3. The study of GAs was a natural extension

of the interest in both search and parallel algorithms. GA research has been carried on at AFIT for almost

a decade(67). Much of that research has been sponsored by Wright Laboratory. In 1996, this research group

adopted the name AFIT/WL Genetic Computation Techniques Research Group (AGCT).

GAs are stochastic semi-optimal search/optimization algorithms based on models of natural evolution

(55) (41:1{2). GAs were developed in an attempt to create robust, semi-optimal search and optimization

algorithms that would be applicable to a wide variety of problems (55, 67). They strike a balance between

exploration and exploitation of the search space (84). GAs are one school of what has come to be called Evo-

lutionary Computing (EC), which also includes Evolution Strategies (ES), Evolutionary Programming(EP),

Genetic Programming (GP), and Classi�er Systems (CS). A brief introduction to GAs follows. Additional

information about EC and its variations, especially GAs, is available in the Current Issues Chapter (Sec-

tion 2.4), and Appendix B. Other stochastic algorithms seen in the biochemistry community include Monte

Carlo algorithms (74, 89) and Simulated Annealing (10, 15, 86, 89).

Genetic Algorithms work on populations of solutions. A candidate solution is called a chromosome
4

encoded as a string (of symbols). A Simple GA (SGA) performs three basic operations on the chromosomes:

2Regardless of whether a Cartesian or Internal coordinate system is used. However, the internal coordinate system has fewer
independent variables

3See Appendix B.3.3
4Because GAs are loosely based on natural evolution, many of the terms associated with natural evolution are used inter-

changeably with the terms created speci�cally for genetic algorithms (67).
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selection, crossover,5 and mutation. The algorithm steps through these three operations repeatedly until

some stopping criteria is met. The execution of a complete iteration < selection; crossover; mutation > is

called a generation. A chromosome is composed of genes, the algorithm space encoding of the problem space

variables. Alleles are the values a gene can assume. Following the biological model, GAs have historically

used a binary encoding. However, other encodings, such as real-valued or higher cardinality alphabets,

are possible. Practitioners have observed better results for numerical optimization problem solutions with

real-valued rather than binary encodings. Historically, at least at AFIT, GAs have been applied to PSP

using a combinatoric paradigm that suggest a binary representation. If PSP is viewed instead as a numeric

optimization problem, would a real-valued GA be more e�ective? The results of this research say YES.

1.3 Parallel and Distributed Computing

As we approach the physical limits of single processor computers, our attention has turned to parallel

computer architectures for increased performance. Many architectures exist which exploit di�erent paral-

lelization schemes. The two primary architectures are single instruction stream, multiple data stream (SIMD)

and multiple instruction stream, multiple data stream (MIMD) (66:16{17). Another growing area of parallel

computing involves distributed computing on a network of workstations (NOW). Each of these architec-

tures has bene�ts and limitations with respect to particular applications, communication and dependencies

between tasks, and data and task distributions.

A major stumbling block in parallel computing is an inability to conceptualize parallel approaches to

problem solving. People tend to think and solve problems sequentially, but sequential solutions to problems

rarely transform into quality parallel solutions. Parallel solutions are said to be scalable if additional proces-

sors can be used e�ciently (66:6). Thus, we are looking for algorithms, such as GAs, that are scalable and

exhibit polynomial time complexity.

1.4 Research Objectives

The overall research objective is a synthesis of the search power of generic algorithms and the com-

putational power of parallel/distributed computing that exploits existing and evolving domain knowledge

from biochemistry to reliably predict the three dimensional structure of proteins in general, and speci�cally,

modi�ed polypeptides. Said another way{the research objective is the e�ective and e�cient prediction of

polypeptide structures based on a triad of real-valued genetic algorithms, biochemistry domain knowledge,

and parallel and distributed computing. This \theme" can visualized, Figure 2 as a PSP \table" supported

5Crossover is sometimes called recombination.
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by three legs, real-valued genetic algorithms, biochemistry domain knowledge, and parallel and distributed

computing, resting on a foundation of software and computational engineering principles and experiment

design.

Distributed Computing

Parallel andBiochemistry

Domain Knowledge

Effective and Efficient

Polypeptide Structure Prediction

Genetic Algorithms

Computational and Software Engineering Principles

Experiment Design

Figure 2. Thesis Theme

Speci�c objective are the following:

� Improve Performance of Hybrid GAs for PSP. The current AGCT hybrid GAs developed by Gates
and Gaulke are, to date, the most e�ective GA for PSP. In addition, the GA community has expended
considerable e�ort de�ning optimal values for the exogenous parameters in GAs. My objective is
to enhance the performance (run time) of these hybrid GAs while maintaining the same behavior
(e�ectiveness).

� Real Valued Genetic Algorithm Implementation for the PSP. Current AGCT PFP/PSP GA imple-
mentations use binary encoding traditionally seen in GAs. The binary representation has some dis-
advantages when applied to multidimensional, high-precision numerical problems (84). A real value
implementation is designed, implemented, and compared to existing implementations.

� Exploit Domain Knowledge to Limit Search Space. The real-valued implementation provides a vehicle
to incorporate domain knowledge into the GA via linear and non-linear constraints. Initially, values
derived from from analysis of existing structures in the Brookhaven National Laboratory's Protein
Data Base (PDB) will be used as the basis for constraints.
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1.5 Methodology

The existing AGCT hybrid GA for PSP developed in turn by Brinkman, Gates, and Gaulke, is re-

engineered as a parallel implementation. It is evaluated against the serial version for correctness (validation)

and performance gains. Separately, a steady state real-valued GA is integrated with the AGCT molecular

energy and data structure implementations to produce, what Zbigniew Michalewicz calls, an Evolution

Program
6, This evolution program allows biochemistry researchers to capture and use domain knowledge

from their problem space. A systematic study is done of the exogenous parameters to characterize their

e�ect in this problem domain. A parallel version is designed and implemented that uses the novel concepts

of Probabilistic Migration7 and Probabilistic Complete Migration.8

1.6 Assumptions

It is assumed the AGCT molecular energy models accurately predict the potential energy of the

conformer9 it acts upon. It is also assumed the nomenclature and molecular representations used in the

existing AGCT algorithms and data structures are consistent with those published by other researchers in

the molecular modeling community. It is also assumed any software developed by this e�ort is considered

\engineering software" (in the acquisition vernacular). As such, certain design alternatives are selected

which are not appropriate for \production software". At the same time, one underlying principle of this

work, particularly in the parallel and distributed realm, is portability. Therefore, no speci�c hardware or

software implementation is assumed, however, recognized engineering standards are used where appropriate.

1.7 Summary

There exist classes of problems that can't be solved in reasonable time strictly by faster computation.

The Protein Folding Problem and the related problem of Polypeptides Structure Prediction are such prob-

lems. It has been shown that the PFP and PSP are of intense interest to the scienti�c community and

the USAF. Evolutionary Algorithms, in particular GAs, are used to provide semi-optimal solutions to these

problems. This thesis investigation, while continuing the AFIT work in GAs applied the PFP and PSP,

takes a radically di�erent approach using real value encoding and search limiting techniques.

This chapter outlines the general problem, describes the main components, and rationalizes the need to

expend research e�ort on genetic algorithms and the protein folding problem. General and speci�c research

6Not to be confused with Evolutionary Programming, see Section 2.4.
7The probability that an improvement at a speci�c node is migrated to other nodes.
8The probability, given a migration, that it is migrated to all other nodes.
9Or molecular conformation
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objectives are de�ned along with assumptions. The next chapter presents salient information in the �elds of

genetic algorithms, protein structure prediction, and parallel/distributed computation support. The balance

of the document is organized as follows: Chapter III discusses algorithmanalysis, design, and implementation,

Chapter IV discusses experiment design, Chapter V discusses results and analysis, and �nally, Chapter VI

provides the conclusions and recommendations for subsequent research. Appendix A contains background on

protein folding and structure prediction problems. Appendix B contains background on genetic algorithms

and other methods of evolutionary computing. Appendix C contains background on parallel and distributed

computing. Appendix D contains operation directions for the Parallel Hybrid GA. Appendix E contains

analysis of the real-valued GA used in this thesis, GENOCOP-III. Finally, Appendix F is a discussion of the

statistical methods used to analyze the results of this research.
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II. Current Issues

2.1 Introduction

This chapter provides a review of \current" issues in the disciplines providing the foundations of this

research. These areas are Biochemistry, Evolutionary Algorithms (in particular, Genetic Algorithms), and

High Performance Computing (in particular, Parallel and Distributed GAs). As a convenience to the reader,

a fair base of knowledge in these disciplines is assumed. Thus, introductory material and information is

omitted from this chapter. However, for the reader unfamiliar with these disciplines, background material is

available in Appendix A, Protein Folding/Structure Predication Problem, Appendix B, Genetic Algorithms,

and Appendix C Parallel and Distributed Computing.

2.2 Previous Research

Previous research in GAs at AFIT has resulted in a number of implementations. Collectively these are

known as the AGCT Genetic Algorithm Toolkit. Included are general implementations of several serial and

parallel genetic algorithms (23, 77) and evaluation functions for several domain speci�c problems (5, 94, 75).

See Figure 3 for the state of the toolkit prior to this research. Figure 31 (Section VI) shows the state of the

toolkit after my e�orts. Most applicable to this research is the work of Brinkman (initial implementation for

PSP) (5), Gates (re�nement of energy function, parameter analysis) (35), and Gaukle (integration of local

minimization and niching) (36) .

2.3 Polypeptides Structure Prediction (PSP)

The protein folding problem (PFP) is a National Grand Challenge problem in biochemistry and high-

performance computing (11). This thesis e�ort addresses polypeptide structure prediction (PSP), which

is one approach to solving the PFP. The challenge of PSP is a method predicting the three-dimensional

structure of a protein (or polypeptide) based strictly on its amino acid structure. Much of the nomenclature

used in this �eld was introduced in the previous chapter (Section 1.1). Additional background information

is presented in Appendix A.

Kau�man's NK model (64) indicates that, with a high level of epistatic interactions between the

variables, the energy surface is extremely multi-modal. Also, his model shows that as the complexity of a

landscape increases, basins of attractions rise toward the mean �tness. That is, not only are there many

local minimal, there is very little di�erence between local optima and the global optimal solution (64).

Actually, his example was for a maximization problem, hence, the concept for the PSP is inverted. Likewise,

Ngo, Marks, and Karplus provide a convincing argument that protein folding via structure prediction is

NP-complete (90:433{506).
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Rabow and Scheraga (98) discuss an interesting GA approach to the PFP using Cartesian coordinates.

This paper is interesting for three reasons. First, it marks a shift by Scheraga, historically a Monte Carlo

advocate, to GAs. Second, it uses the Cartesian coordinates as variables, encoding them as real values.

Finally, the recombination (crossover) operator generates o�spring as linear combination permutations of

the parents. Scheraga claims this operator, while locally modifying a variable, is less disruptive to the overall

conformation. Unfortunately, he uses a simple energy function based on a lattice model. Thus, to evaluate

the child, it must be �tted to points on the lattice. This requires large amounts of computation and distorts

the candidate solution.

A deterministic method based on the ECEPP energy model using the ��� algorithmhas been presented

by Floudas, et al (2). It is guaranteed to produce an �� optimal solution by computing an upper and lower

bound. As the search progresses, the bounds become tighter. This approach uses information mined from

commonly available sources, to limit the search space and thus start with a tighter lower bound. ��� has

been applied to the ECEPP/3 model. This technique has promise as a method to identify the optimal

CHARMM energy value for Met-enkephalin.

Elsewhere the intractability of the molecular conformation search space has been shown (Section 1.1.4).

Ngo, discussing the Levinthal Paradox (90)

The essence of the (Levinthal) paradox is that in theory a protein is expected to require expo-
nential time to fold, given an arbitrary stating con�guration, whereas in practice proteins are
observed to fold within seconds to minutes, independent of size.

The argument for exponential folding time is base on the molecule sampling con�rmations in a completely

random fashion without any \clues" as to the location of its native conformation. The fact is that proteins

fold much faster. Experiments indicate the existence of hierarchy in observed protein structures. These

suggest that a protein does have clues as to the nature of its native state even when it is quite far from being

in the folded state. The clues come from the propensities of parts of the chain to form native-like structures

(90).

Assuming ! dihedral angle is �xed at the trans
1 position, the (�;  ) pair of dihedral angles de�nes

the backbone of a polypeptide. Many times researches use the backbone as a more tractable abstraction

(or simpli�cation) of the molecular system under study. In a large molecule the backbone dihedral angles

(�;  ; !) are responsible for de�ning the correct folded state. However, it seems that the side-chain dihedral

angles (�0s) play an important role in determining the energetically most stable con�guration (2).

In the early 1960's, Using hard-sphere models of the atoms and �xed-geometries of the bonds, Ra-

machandran and colleagues (14) derived regions in terms of the allowed values of the (�;  ) dihedral angles.

1�180circle or � �
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The key result of their calculations was that for every naturally occurring amino-acid, similar patterns were

observed.

The Ramachandran Plot, see Figure 4, is a tool widely used in the molecular modeling. It plots � versus

 values, for anywhere from a single residue up-to thousands of angles. Scheraga identi�ed similar patterns

using a build up process where he generated thousand of conformations for the 20 amino acid resides. These

conformations where then evaluated using the ECEPP energy model to identify those most likely to occur

in nature (2).

From Biochemistry by Stryer. Data derived from Brookhaven Protein Data Bank.

Figure 4. Ramachandran Plot

The o�cial repository of protein structures in the United States is the Brookhaven Protein Data Base

(PDB) operated by the National Institute of Health. Access to the database is available via the World Wide

Web. The Dictionary of Protein Secondary Structures (DSPP), hosted in Germany, is another excellent

source for data about molecular structure that have already been identi�ed. In DSPP, dihedral angle values

are readily available, where as the PDB �les from Brookhaven use Cartesian coordinates.
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2.4 Genetic Algorithms

The focus of this section is on data representation issues and the concept proposed of an evolution

program. See Appendix B for comprehensive information on GAs.

In his paper's introduction at the �rst Parallel Problem Solving from Nature (PPSN) conference (39),

David Goldberg captures the essence of the GA data representation issue:

The use of real-coded or oating-point genes has a long, if controversial, history in arti�cial
genetic and evolutionary search schemes, an there use as of late seems to be on the rise. This
rising usage has been somewhat surprising to researchers familiar with genetic algorithm (GA)
theory(Goldberg, 1989;Holland, 1975), because simple analyses seem to suggest that enhanced
schema processing is obtained by using alphabets of low cardinality, a seemingly direct contradic-
tion of empirical �ndings that real codings have worked well in a number of practical problems.
The debate between practitioner and theoretician over this paradox of real codings has risen al-
most to the point of schism. Theoreticians have wondered why practitioners have paid so little
heed to the theory, and practitioners have wondered why the theory seems so unable to come to
terms with their �ndings.

Goldberg attempts explain this paradox by the notion of virtual alphabets. That is, a real value coding forms

\pools" that behave as individual characters in a virtual alphabet. It also suggest that the real-coded GAs

can be blocked from further progress in those situations when local optima separate the virtual characters

from the global optimum. On the other hand, Wright (113) shows that Holland's schema theorem, the

Fundamental Theorem of Genetic Algorithms, holds for real-valued codings by viewing an interval on the

number line as a schema.

The concept of an evolution program is used throughout this research e�ort. The concept, and choice

of nomenclature, are best described by Michalewicz

I used the term \Evolution Programs" to mean some generalization of genetic algorithms. The
book was written in 1991, when (apart from GAs) other algorithms were less known. Also, I
tried to make a parallel to the title of famous book by N. Wirth: \Algorithms + Data Structures
= Programs". His title suggests that to construct a successful program, appropriate algorithm
should be used with appropriate data structures. The same is with evolutionary stu�: appro-
priate algorithms (in terms of problem-speci�c operators) plus appropriate data structures (as
chromosomal representation).(83)

In general, AI problem solving strategies are categorized into strong and weak methods (84). A weak method

makes few assumptions about the problem domain; hence it usually enjoys wide applicability. On the other

hand, it can su�er from combinatorially explosive solution cost when scaled up to larger problems. This can

be avoided by making strong assumptions about the problem solving method. But a disadvantage of such

strong methods is their limited applicability. Figure 5 shows a series of evolution programs EP1 through

EP5. Starting with EP1, which is the weakest, they become more problem speci�c until EP5, the strongest,

is applicable to only the problem P (79).
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Figure 5. Hierarchy of Evolution Programs, from (Michalewicz 1993)

The trade o� between e�ciency and problem spectrum (broad applicability) is shown in Figure 6.

Notice how the e�ciency increases when the problem spectrum is limited. For example, Q could be a

commercial package designed to deterministicly solve problem P . EP1 represents a classical GA, while EP5

represents a very focused evolution program.

2.5 Parallel Genetic Algorithms

General information about parallel computing is available in Appendix C. There are twomajor concerns

when parallelizing any algorithm: is the parallel algorithm correct (e�ective) and is it faster (e�cient) than

the serial version? Correctness is an issue because there is greater di�culty in verifying parallel algorithms

than sequential programs (72). Given that the parallel algorithm is correct, speedup is the primary goal of

parallelization (9). A tradeo� analysis is generally required to determine if the estimated bene�ts warrant

the expenditure of resources to parallelize an algorithm. There is evidence to suggest that parallelizing

genetic algorithms is worthwhile and should be examined further (22, 48, 96, 104, 109). Parallel GAs can

be synchronous or asynchronous, which in some cases actually improves performance (54).
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Figure 6. E�ciency/Problem Spectrum and Evolution Programs, from (Michalewicz 1993)

Data and control decomposition are alternate means of dividing a problem into portions that can be

worked on simultaneously. In general, data decomposed algorithms perform the same operations on subsets

of the input (data parallelism) and control decomposed algorithms perform di�erent operations on the total

input (73). In either case the results are recombined in a fashion to obtain the �nal result(s).

Genetic algorithms are easily parallelized because they are highly data decomposable (although control

decomposition is not impossible, especially as the complexity of operators and evaluation functions grow).

Parallelizing GAs using data decomposition can be as simple as running multiple copies of the same program

on di�erent processors, each starting with a di�erent random number seed, and then choosing the best result

from all runs.

Data parallelization techniques are also amenable to static load balancing because their computation

and communication patterns are regular (24, 73). This does not imply that all processors are searching in

equally promising portions of the search space. Thus, some e�ciency may be lost to subpopulations that

are searching similar solution neighborhoods or stuck in local optima.

Two models, which lie at opposite ends of a granularity spectrum, have been proposed for parallel

genetic algorithms|the island model (course-grained) and the neighborhood model (�ne-grained) (21, 48).

These models are designed to improve the simplistic parallel approach by sharing near-optimal results with

some portion of the global population. The farming model, on the other hand, decomposes control, rather

than data. All three are discussed in the following sections.
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Island Model: The island model is an extension of the simplistic approach where the total population

is divided into subpopulations which are distributed among the processors. The subpopulations evolve in

parallel, however at certain time intervals a migration occurs where solutions are communicated between

processors (21:10). Migration rates, migration selection strategies, and migration patterns are additional

parameters with associated design decisions that must be de�ned for the parallel genetic algorithm. Near-

linear speedup is expected and has been observed for island model parallel genetic algorithms (5:60) (7, 109).

The time complexity of island model GAs is O(nl
p
), where p is the number of processors, n is the population

size, and p� n (21). As p! n, the resulting small subpopulation size increases the ratio of communication

time to compute time and the speedup becomes much less than linear. Island model GAs are typically used

on course-grained or multiple-instruction-multiple-data (MIMD) architectures (65).

Neighborhood Model: The neighborhood model splits the population up spatially in a two- or three-

dimensional grid. This grid and the de�nition of a neighborhood limits the interaction of individuals in

the population. Typically, a single string is assigned to each processor, therefore crossover and selection

must be modi�ed because their operation is distributed across more than one processor. Although their

convergence characteristics have been observed to be better than the Island Model (21:24), parallel genetic

algorithms of the neighborhood model don't exhibit speedup because they assume n = p, therefore no

speedup can be obtained because more/fewer processors are not allowed. The neighborhood model is most

often compared to the simple GA for time complexity analysis (O(s+l) vs O(nl) where s is the neighborhood

size) (21:24). Neighborhood model GAs are generally implemented on �ne-grained or single-instruction-

multiple-data (SIMD) architectures (21).

Farming Model: The term farming is not used in an agriculture context. Rather, it is used in a

manufacturing context, as in to farm out work (102), in this case, complex computations. It consist of one

entity called a foreman and one or more workers. The foreman makes the decisions, including assigning

work. The workers perform the assigned task. As in the real world, the workers are sometimes idle, awaiting

work from the foreman. One advantage to this approach is that its e�ectiveness is identical to the serial GA.

Thus every thing known about the behavior of the serial algorithm, both theoretical and empirical, can be

exploited.

2.6 Summary

The determination of the tertiary structure of proteins is a major challenge in biochemistry. Exper-

imental techniques are considered accurate but time consuming, and are incapable of keeping pace with

the number of protein sequences being discovered. Prediction techniques are hampered by the size of the

conformational search space and the time complexity of calculating energy or solving motion equations.
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However, classical prediction methods, combined with novel search and optimization algorithms, show great

potential for both a solution to the PFP and a better understanding of the underlying behavior and opera-

tion of biological systems. This thesis e�ort considers the application of real-valued genetic algorithms using

energy minimization as one such combination for solving the protein folding problem. In particular, the use

of domain knowledge to limit the search (solution) space and thus increase the e�ciency is investigated.

The next chapter analyzes issues from the problem and algorithm domains, and discusses the design and

implementations of three re�ned GAs.
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III. Algorithm Analysis, Design, and Implementation

The previous chapter reviewed the current literature in the three domains that support this research;

Biochemistry, Evolutionary Algorithms, and High Performance Computing. This chapter is divided into two

parts. The �rst half analyzes speci�c issues from the above domains. The second half explains design and

implementation details for three re�ned GA algorithms.

3.1 Analysis

3.1.1 Cost Analysis of Local Minimization using Conjugate Gradient. This section analyzes the

conjugate gradient technique (CG) for local minimization with respect to PSP. The objective is to identify

a strategy for overcoming the increased run time cost observed in the serial implementation.

A CG minimization of the CHARMM energy model was adapted from Numerical Recipes in C (97)

by Gates and Gaulke (36, 78). While a hybrid GA with CG minimization is more e�ective for PSP than a

SGA, it incurs a substantial run time penalty. Analysis of the algorithm is not trivial. CG is an iterative

method and converges in n or fewer iterations for a quadratic function (66) where n is the number of variables.

However, the CHARMM energy function (Equation 16, Appendix A.3) is far from quadratic. Every iteration

involves the cost of a call to the �tness function, a O(n2) operation. A constant (ITMAX = 200) is used as

an upper bound on the number of iterations attempted. Empirical results of pro�ling the serial hybrid GA

developed by Gates and Gaulke are presented in Table 1. The pro�ling represent equivalent runs of 500

evaluations against a 20 member population of the molecule Met-enkephalin on similar workstations (Sun

Sparc 2's). Lamarckian and Baldwinian minimization techniques are used for instances of CG, while a simple

GA is used as a baseline. The two orders of magnitude di�erence in time per call to the �tness evaluation

function, eval func(), between the CG minimized and non-minimized GAs suggest that, frequently, the

number of iterations per local minimization reaches the upper bound, ITMAX.

The Lamarckian approach represents the concept of learning from the environment which is passed on

to the o�springs via replacing the chromosome's genotype (molecular structure) as well as the phenotype

(�tness) resulting from minimized chromosome (111). The Baldwinian approach also represents the concept

of learning from the environment but with out passing the knowledge on to o�spring. Here only the phenotype

(�tness) resulting from minimized chromosome is used in the selection process. Baldwinian can also be

thought of as identifying a a favorable region of the search space, which is given an increased chance of

selection by association with the �tness resulting from minimization (111).

The hybrid GA under study here, like most classical GAs, is generational. That is, it follows the

algorithm presented in Appendix B.3. Thus for every generation there is a checkpoint at which asynchronous

processes could rendezvous. This �ts into a farming of parallel computation. Here, farming is used in
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manufacturing rather than agriculture sense. A supervisory node, called the client, distributes (farms) work

to one or more worker nodes, called a server. When the server completes the work, the results are returned to

the client. In order for this approach to be successful, the computational e�ort involved must be signi�cant

compared to the communications cost (a coarse grained algorithm). Thus the need to identify large chunks

of computation in the algorithm, which can be accomplished independent of the other chunks, but doesn't

require large quantities of dynamic data. Static data can be replicated a priori at the server nodes.

The three classic operators (selection, crossover, and mutation), and the evaluation operation, are

examined to identify candidate processes to be farmed out. The selection operator, especially when using

�tness proportion selection, is a synchronous process and requires access to the entire population; thus, is

not a candidate. The crossover is a binary operator requiring access to two chromosomes at a time. In

this application each chromosome is operated on by crossover only once per generation. While it is an

asynchronous process, it requires negligible computation time. Total time for crossover in the case study

was less than one second, a poor candidate for farming. Mutation is an independent unary operator and

thus an asynchronous process. However, it has the same problem as crossover but worst. While the code

pro�ler records the function calls to crossover, the times are so small they fail to register. The evaluation

operator is also an independent unary operator and thus an asynchronous process. This operator is the

perfect candidate for farming as its computation dominates the GA, requiring approximately 80% of the

total computation time for the simple GA and over 99% for the GAs using CG, see Table 1.

Table 1. Serial Hybrid GA Pro�ling Results

Minimization Total Exec Time in % Time in Calls to Avg Time/
Algorithm Time (sec) charm eval() charm eval() charm eval() Call (sec)

Lamarckian 4989.55 4978.78 99.78 507 9.84

Baldwinian 4030.19 4011.4 99.53 504 7.96

Simple 56.67 46.11 81.37 514 0.09

The evaluation operator is implemented for PSP as function charm eval(). Since the CGminimization

is speci�c to the function being minimized, in this case the CHARMM energy function, it is hidden, in the

software engineering sense, behind charm eval(). Not surprising, the test cases con�rm that the increase in

run time involving CG local minimization involves charm eval() or one of its children (which includes the

CG functions). There is a two orders of magnitude increase in in both the total execution time, and time

per call to charm eval(), when local CG minimization is used (Lamarckian or Baldwinian).

Finally, the software design supports this as an ideal point from which to \farm" out work. The

algorithm domain, instantiated by the modi�ed version of the GENESIS software, is very loosely coupled

from the application domain, instantiated by the CHARMM energy function and related molecular struc-
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ture transformation functions. The implementation of the Parallel Hybrid GA (PHGA) is discussed in

Section 3.2.1.

3.1.2 Constraint Set Development. My focus here is on development of techniques usable by

biochemistry researchers for structure prediction. The constraint sets developed in this research demonstrate

the feasibility of the approach. In general they are conservation, that is, less restrictive. A biochemistry

researcher studying a particular molecule may choose to develop more aggressive constraints. This exibility

is inherent in my design.

3.1.2.1 Conventions Adopted. The convention of the chemistry community is for dihedral

angles to range from �180� to 180�. Also, 0� is at the top of a unit circle, while �180�/ 180� is at the

bottom. The numbers increase in a clock wise direction. To consistently apply the domain constraints the

following convention is de�ned.

When de�ning a constraint, values for the lower and upper bounds of the valid region, �min and
�max must be assigned such that one travels from �min to �max in a clockwise direction.

This creates a pathological condition when the the valid region wraps (involves the �180�/ 180� position).

For the generalized constraint forms, Equations 6 and 7, discussed in Section 3.2.2.1, to work properly, �min

to �max are adjusted in the following manner.

�min > �max ! �minadj = �min � 360� (2)

�min < �max ! �maxadj = �max + 360� (3)

The resulting �minadj and �maxadj may be outside the range �180� to 180�. However, Equations 6 and

7 function correctly because the phase shift component is cyclical while the di�erence will be positive as

required by the scaling component. These adjustment have been made to �min and �max in Tables 2{5.

3.1.2.2 [Met]-enkephalin. The \loose" constraints for [Met]-enkephalin (Table 2) were de-

veloped by examining Ramachandran plots of observed values of phi and psi angle for the residues alanine

and glycine (13). Of the twenty amino acids, proline and glycine have unique � distributions. The other

residues are similar to alanine. The \tight" constraints (Table 3) consider the above data and infer additional

insights from \homologous" molecules.

3.1.2.3 Polyalanine. Values for the Polyalanine constraints (Table 4) were developed in a

similar way. It was known a priori that this molecule forms an �-helix secondary structure. Thus a plot from

Stryer's text (108) that speci�es the � region for an �-helix was used. A similar process to that above was
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Table 2. Loose constraints for [Met]-enkephalin

Dihedral Midpoint Radius �min �max

�Non�glycine �120 90 150� 360 �30

�Glycine �180 135 45� 360 �45

	 60 150 �90 �150 + 360


 �180 20 160� 360 �160

�1 �60 j 60 j 180 30 �75 j 45 j 175� 360 �45 j 75 j �165

Table 3. Tight constraints for [Met]-enkephalin

Dihedral Midpoint Radius �min �max

�Non�glycine �120 60 �180 -60

�Glycine 130 70 60� 360 �160

	 150 140 10� 360 �70


 180 12:5 167:5� 360 �167:5

�1 �60 j 60 j 180 7:5 �67:5 j 52:5 j 172:5� 360 �52:5 j 67:5 j �172:5

used for the \tight" constraints (Table 5). After consulting with biochemistry domain experts, a third set

of constraints \tight, relaxed terminals" were de�ned. These are based on the knowledge that the dihedral

angles for the terminals residues will not be consistent with the non-terminal angles even in a very regular

secondary structure like an �-helix. They are the same as the \tight" constraints, but without constraints

on residues 1 and 14.

Table 4. Tight constraints for Polyalanine
Dihedral Midpoint Radius �min �max

� �67:5 22:5 �90 �45

	 �30 30 �60 0


 180 20 160� 360 �160

�1 �60 j 60 j 180 30 �90 j 30 j 150� 360 �30 j 90 j �150

3.1.3 Real-valued GAs. As indicated elsewhere, a principle objective of this research is to evaluation

the performance that can be obtained using a real-valued GA for PSP. To accurately assess the di�erence

between binary and real-valued data representation, the two implementations ideally should identical. The

GENESIS system, which is the basis for other implementations in the AGCT tool box, such has the hybrid GA

discussed in Section 3.1.1, provides a real-valued interface. However, this is just a convenience for interfacing

to a real-valued �tness function. The genes are actually converted to a binary representation, which is acted

upon by traditional binary-valued operators. As indicated in the literature search, the greatest bene�t from

real-valued GAs is the availability of richer operators. Of the real-valued GAs available in the public domain,
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Table 5. Tight constraints for Polyalanine
Dihedral Midpoint Radius �min �max

� �60 15 �75 �45

	 �45 15 �60 �30


 180 5 175� 360 �175

�1 �60 j 60 j 180 5 �65 j 55 j 175� 360 �55 j 65175

GENOCOP-III was selected because of its use for non-linear constraint problems. GENOCOP-III1 is the

new version of this system for handling Numerical Optimization of Problems with Linear and Non-Linear

Constraints. It is been used as the real-valued GA

3.2 Algorithm Design and Implementation

This thesis e�ort involves three distinct GA algorithmdesigns and implementations. The �rst, discussed

in Section 3.2.1, is a parallel implementation of the existing AGCT hybrid GA. The second, discussed in

Section 3.2.2 is a real-valued implementation mating the molecular model with the GENOCOP-III package.

The third, discussed in Section 3.2.3 is a parallel implementation of the second algorithm.

3.2.1 Parallel Hybrid GA. The Parallel Hybrid GA (PHGA) is implemented by modifying the

serial hybrid GA developed by Brinkman (5), Gates (35), and Gaulke (36) into a farming model parallel GA.

Message passing is accomplished via the Message Passing Interface (MPI) library (101).

3.2.1.1 Algorithm Design. Upon initialization, each node determines its role, either client or

server. In either role, the node performs domain initialization, building a molecular model of the polypeptide

to be studied. The client generates an initial population and proceeds as though it were a serial algorithm,

except its �tness evaluation (and optionally, local minimization) tasks are \farmed" out to a server via a

synchronous send message. The server computes and returns the �tness and an updated chromosome to

the client via a synchronous reply message. To maintain the same evolutionary trajectory as the serial

execution, the client synchronous each generation. That is, it does not proceed to the next generation,

Gt+1, until all evaluation task farmed out in generation, Gt, have been returned. When the required number

of evaluations are accomplished, or some other termination condition is reached, the client broadcast an

asynchronous termination message to the servers. The client then performs its normal domain output and

other termination activities. Pseudo-code for the client node is in Figure 7. Server node pseudo-code is in

Figure 8 and pseudo-code for the farming operation is in Figure 9.

1The developers of this algorithm have been inconsistent with its naming in the literature. Genocop, Genocop-III.1.0,
GENOCOP-III, etc., have been used synonymously. In this document I have adopted the standardization of GENOCOP-III.
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1. Build molecular model
2. Randomly generate initial population
3. Put servers in Q

4. EvalCnt  population size

5. Loop

6. Perform farming operation
7. Until EvalCnt evaluations performed
8. Loop { Main Body
9. Perform selection
10. Perform crossover
11. Perform mutation
12. EvalCnt  evaluations needed in this generation
13. Loop

14. Evaluate by perform farming operation
15. Until EvalCnt evaluations performed
16. Until maximum number of evaluations or other stopping condition
17. Broadcast termination message to servers
18. Perform domain wrapup

Figure 7. Farming Model for PSP, Client node

3.2.1.2 Scheduling. Scheduling involves the distribution of work to available servers. The

objective is to keep all nodes equally busy. Initially, scheduling was via a round robin scheduler. When a

server was needed to perform a task, the processor with the Node ID one greater than that previously used

was selected. When the highest number Node ID had been used, we wrapped around back to Node ID 1,

thus bypassing the client node, which is always Node ID 0. In theory, the round robin technique should be

very equitable. The reality is the severs do not always return work in the order dispatched. This is especially

true on a network of workstations (NOW) where unbalanced system loadings resulting from the multi-user

environment and network conicts cause large variability in individual performance.

The revised scheduling technique is a First In, First Out (FIFO) queue. The queue is adapted from

the classical circular queue (array implementation) found in basic data structures textbooks. During initial-

ization, the client creates a queue and enqueues IDs of all server nodes. When a tasked is to be farmed out,

the server at the front of the queue is used. When a server returns it task, its ID is put into the back of the

queue. The revised scheduler yielded a slight, but measurable, decrease in run time.

3.2.2 REal-valved GA, Limited by constraints (REGAL) . REGAL is my principle contribution to

the AGCT Tool box (Section 2.2). A genetic algorithm, GENOCOP-III, is integrated with data structures,

i.e. constrained real-valued variables and other domain constraints, to form, what Michalewicz calls, an

evolution program, (see Section 2.4).
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1. Build molecular model
2. Loop

3. Receive message from client
4. If MINIMIZE
5. Perform local minimization (implicit �tness evaluation)
6. Update �tness of individual in message bu�er
7. If REPLACE
8. Replace message bu�er string with minimized string
9. Else
10. Compute �tness, update message bu�er
11. Send message bu�er to client
12. Until termination message received

Figure 8. Farming Model for PSP, Server node

1. If reply message waiting
2. Update �tness of individual with value from message
3. If REPLACE
4. Replace chromosome in population with minimized string from message
5. Enqueue serveri in Q

6. Increment EvalsPerformed
7. If EvalsPerformed < EvalCnt ^Q 6= ;
8. Dequeue serverj from Q

9. Send tasking message containing string and local min parameters to serverj

Figure 9. Farming Model for PSP, Farming Operation

3.2.2.1 Incorporation of Domain Knowledge. As discussed in previous chapters, there is a

growing body of knowledge applicable to PSP. Likewise, there is little dispute that a \strong" algorithm out

performs a \weak" algorithm in its domain. This is the premise of Michalewicz's Evolution Program (see

Section 2.4). But how do we incorporate knowledge from the problem domain into REGAL? The following

approach is perhaps the greatest contribution to the PSP from this research e�ort.

The analysis in Section 3.1.2 yielded a number of constraint sets. The constraint sets, de�ned over

the independent dihedral angles, divide the search space into probable and improbable regions. Let Sprob

represent the probable search space and Simprob represent the improbable search space. Thus formally,

Sprob
[
Simprob = S (4)

Sprob
\
Simprob = ; (5)
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A constraint set de�nes a �imin
and �

imax for each xi 2 ~x 2 IR that is active in the constraint set. If

xi is not active in the constraint, �imin
and �

imax default to �� and � repectively. The constraint set can

be transformed into a series of nonlinear inequalities of one of the two following forms:

0 � cos(� �
�min + �max

2
) � cos(

�max � �min

2
) (6)

are the constraints for the f�;  ; !g angles, and

0 � cos(3� �
�min + �max

2
)� cos(

�max � �min

2
) (7)

are the constraints for the f�1g angles which have a trimodal nature similar to that in Figure 1.

The nonlinear inequalities are hard coded into the software prior to compilation. Each set is linked to

a particular case identi�er. The speci�c set to be applied is indicated by a parameter supplied at runtime in

the input �le.

3.2.3 Parallel REGAL (Para-REGAL). Para-REGAL is an modi�ed island model parallel imple-

mentation of REGAL for PSP. The traditionally the parallel GA island model evolves the subpopulation

at a particular node in an environment identical2 to the environment at all other nodes. At some interval,

a portion of the subpopulation is migrated to other nodes. Para-REGAL modi�es this model in two ways.

First, in Para-REGAL, each node can be an unique environment. In addition to unique seeds, di�erent active

constraint sets, di�erent exogenous parameters, and di�erent explicit initial populations can be speci�ed.

The second modi�cations involves a probabilistic migration policy. Two parameters, Probability of Migration

(Pm) and Probability of Complete Migration (Pcm). An update to the local reference population is the trigger

for a migration which is accomplished with probability Pm. Pcm is the probability the migration reaches

all other non-terminated nodes. Thus the probability node i will receive the update to node j's reference

population is Pm � Pcm.

Assumming Pm � Pcm > 0:0, the migration of �t individuals between islands provides an opportunity

for each island to maintain a sense of progress across the archipelago.3 At a speci�ed interval, the island

takes a checkpoint computing the following metrics:

� Average Genotypic Distance. Arithmrtic mean, with respect to the local best chromosome, of genotypic

distances to the best chromosome at each non-local island.

� Least Genotypic Distance. Distance to the genotypicly nearest island.

2Except for the seed of the random number generator.
3A collection of islands; thus the islands making of the Para-REGAL execution
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� Greatest Genotypic Distance. Distance to the genotypicly farthest island.

� Average Best Fitness. Arithmetic mean of the best �tness values.

� Local Delta. Di�ernce between local best �tness and the average best �tness.

Experiments to evaluate Para-REGAL are discussed in Section 4.5 and results are presented in Section 5.4.

3.3 Summary

This chapter has examined three issues from the problem and algorithm domains. A hybrid GA using

conjugate gradient local minimization was analyzed in Section 3.1.1 to increase performance by farming out

computationally intensive tasks in a parallel GA. The design of the resulting re�ned GA was presented in

Section 3.2.1. Section 3.1.2 analyzed data available from the biochemistry domain to develop �ve sets of

constraints for the two test molecules used in this research, [Met]-enkephalin and Polyalanine. In addition, the

choice GENOCOP-III as the basis for subsequent real-valued GA research was presented in Section 3.1.3.

From these, two additional re�ned GAs, REGAL, and Para-REGAL, were derived. Design details were

discussed in Sections 3.2.2 and 3.2.3. The next chapter presents experiments design to evaluated these

re�ned GAs.
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IV. Experiment Design

From the previous chapters, the hypothesis has emerged that a real-valued GAs could be augmented

with knowledge from the problem domain to form a more powerful, if limited, search method. Will it work?

Is it exible? Are there any unforeseen issues? How does this approach compare with speeding up an existing

good, but slow, method by distributing the workload in a high performance computing environment? What's

the bene�t? What are the limitations? The experiments described in this chapter are intended to answer

these questions.

General experimental issues are discussed in Section 4.1. Experiment I, Section 4.2, evaluates a parallel

implementation of the AGCT Hybrid GA. Experiment II, Section 4.3, evaluates the feasibility of exploiting

domain constraints with respect to PSP. Experiment III, Section 4.4, is speci�cally designed to characterize

the e�ect of exogenous input parameters with respect to REGAL because of issued raised during Experiment

II. Experiment IV, Section 4.5, is an analysis of a constraints and probabilistic migration applied to parallel

and/or distributed real-valued GA implementation for PSP.

4.1 Experiment Techniques

The following two sections provide background on experiment designs issues. In particular, the meth-

ods used to generate random number generator seeds, Section 4.1.1, and statistical analysis methods, Sec-

tion 4.1.2, are discussed.

4.1.1 Random Number Seeds. The stochastic nature of GAs is totally dependent on the random

number generator. Dymek's thesis (23) studies the random number generator used in Genesis. He shows

that the sequence generated does in deed appear to be random. However, he raises an concern about the

algorithm used by Sawyer (67) to generate nodal seeds. A nodal seed is the speci�c seed for a node in a

multi-nodal parallel algorithm. The algorithm used by Sawyer is:

Seed =(unsigned) ((Seed + My_node) / (My_node + 1);

As Dymek points out, the integer division results in this being a step function. For small seed values (and

larger node counts), this result in many nodes having the same seed value. Obviously, if seeded identically, the

pseudo-random numbers that result induce identical behavior in each like seeded node{a waste of resources.

To over come the above problem, three separate approaches are taken. First, where diversity is in-

tended, the seeds are randomly generated. The procedures for Genesis based, and GENOCOP based, GA

software are discussed in the next paragraph. The second approach was to modify the nodal seed generating

algorithm by replacing the integer division with a modulus operation:
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Seed =(unsigned) ((Seed + My_node) % Max_Seed_Value);

The third approach, used in the client-server farming node, was to have the client generate all random

numbers and pass the random number to the server. This resulted in almost identical results between the

serial and parallel algorithms. Thus Dymek's desire for a parallel GA that \performs as close as possible to

the sequential version, only faster (23:154)" is accomplished.

The Genesis GA engine requires a single nine digit seed value. The �ve values for Genesis in Table 6

are generated with the following algorithm:

Seed = floor((999999999 � rand number from Xcalculator) + 1) (8)

The GENOCOP III GA engine requires two random number seeds. The Seed1 ranges from 0 to 31328. The

Seed2 ranges from 0 to 30081. The �ve seed pairs in Table 6 are generated using the following algorithm:

Seed 1 = floor((31328 � randon number from Xcalculator) + 1) (9)

Seed 2 = floor((30081 � randon number from Xcalculator) + 1) (10)

Table 6. Random Number Seeds
Set Genesis Seed GENOCOP Seed 1 GENOCOP Seed 2

1 712874273 26482 13328

2 245786357 18695 06208

3 840511331 25743 22696

4 924771098 05695 11275

5 101185467 11816 22450

4.1.2 Statistical Techniques. This thesis presents the results of a number of experiments in which

various implementations of genetic algorithms are compared. In order to draw meaningful conclusions from

the results of those experiments, statistical hypothesis testing is required (1:483). Analysis of Variance and

the Kruskal-Wallis H test are used for hypothesis testing. Details of these is in Appendix F.

4.1.2.1 Analysis of Variance (ANOVA). Suppose we have a treatments or di�erent levels of

factors we wish to compare. Each of the n observed responses from each of the a treatments is a random

variable. For hypothesis testing, the model errors are assumed to be normally independently distributed

random variables with mean zero and variance of �2. The test is to determine if the means of two (or more)

separate populations (results at various treatment levels) are the same. ANOVA can be used to compare a
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number of population means, simultaneously, thus avoiding the need for a large number of two-sample tests

(1).

4.1.2.2 Kruskal-Wallis H Test. Many statistical tests are applicable only when the data

may be assumed to be normally distributed. Such tests are not appropriate to some experiments in this

thesis. The populations in these experiments cannot be assumed to be normally distributed because there is

a known bound on the experimental data. The existence of a bound on the experimental data is inconsistent

with the assumption of a normal distribution. Furthermore, in most cases the bounds are near the observed

means of the experimental data, so that the errors introduced by the assumption of a normal distribution

are likely to be quite large. For these experiments, Kruskal-Wallis H Test is used.

4.2 Experiment I: Evaluation of the E�ciency of a Parallel & Distributed Hybrid GA

4.2.1 Motivation and Objective. The conjugate gradient local minimization technique used in the

hybrid GA is in terms of e�ectiveness, superior to the simple GA (36, 78). However, this is at a substantial

cost in terms of e�ciency as seen in Section 3.1.1. Since substantial e�ort has been invested in identify

e�ective parameters for simple GAs (35, 37), it is desirable to maintain behavior that results in the same

solution, only arriving there much quicker.

The objective of this experiment set are twofold. First, validate that the results obtained from the

parallel implementation are equivalent to those obtained by the serial implementation. Secondly, characterize

empirically the e�ciency of the parallel implementation in terms of overhead, speed-up, and scalability.

4.2.2 Methodology. Research previously conducted by Gaukle (36, 78) was analyzed to determine

which minimization techniques produced the best results. Test case based on the selected techniques are

shown in Table 7. The probability of minimization is given by Pm. Likewise, the probability of replacement

is given by Pr.

Experiments for each test case are run using 1, 2, 6, 12, 18, and 24 processors on the Aeronautical

System Center's (ACS) Major Shared Resource Center's (MSRC) Intel Paragon. The serial implementation

developed by Brinkman, Gates, and Gaulke (5, 35, 36) was used for the single mode experiment.

A farming model parallel implementation based on the serial hybrid GA was used for the multi-node

experiments. Implementation details of are given in Section 3.2.1. Comparison between the single node

serial runs and the 2 node parallel runs was used to measure the overhead imposed by the communications

library. Parallel runs on 6, 12, 18, and 24 processors are selected to evaluate the speed-up and scalability
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of this algorithm. 24 nodes was selected as an upper bound since it exceeds the population size of 20 which

historically has produced the best results (35).

Table 7. Hybrid GA Test Cases
Case Selection Minimization Technique Pm Pr

A Fitness Proportional Simple 0.0 0.0

B Tournament Selection Simple 0.0 0.0

C Fitness Proportional Baldwinian 1.0 0.0

E Fitness Proportional Lamarckian 1.0 1.0

F Fitness Proportional Lamarckian 1.0 1.0

An objective of this experiment set is validation of equivalent results from the serial and parallel imple-

mentations. Therefore, all runs used the same random seed value 987654321. Runs used population sizes of

20, 50, and 100, for 500, 1000, 1500, and 2000 evaluations. Three replicates of each cell are performed. The

result is 1440 individual experiments! (240 with the serial algorithm and 1200 with the parallel algorithm)

Results are presented in Section 5.1.

4.3 Experiment II: Evaluation of the Use of Constraints in the PSP

4.3.1 Motivation and Objective. The literature search indicates a large body of knowledge is being

assembled about the PFP and PSP (Section 2.3). Intuitively, it seems this knowledge can be exploited to

enhance the e�ectiveness, and e�ciency of the search process. Validation of this conjecture is this experiment

set's objective.

4.3.2 Methodology. The �rst step was the development of a \reasonable" set of domain constraints,

which is detailed in Section 3.1.2. Two molecules, [Met]-enkephalin and Polyalanine were used in this

experiment. The constraint sets: none, loose,and tight, are used for each molecule. Of course, the constraints

[Met]-enkephalin tight are di�erent than Polyalanine tight.

4.3.3 Parameter Selection. A group (or block) of �ve experiments are performed for molecule using

each constraint set . In each block, all variables are consistent except the random number generator seeds.

The seed used are in Table 6. Full parameter details are presented in Tables 8 and 9. Discussion of selection

rational follows.

Based on insight from experimental results in Section 5.1, reference population sizes of 20 and 50

are used. Because the ratio of the feasible solution space, F , to the search space, S, GENOCOP-III cannot
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Table 8. Input Parameters for Experiment II, Met-enkephalin
Parameter none loose tight

Number Variables 24 24 24

Number NLE 0 0 0

Number NLIE 0 18 18

Number LC 0 0 0

Number DC 24 24 24

Ref Pop Size 20 20 20

Search Pop Size 20 100 40

Number Operators 10 10 10

Total Evaluations 50,000 50,000 50,000

Reference Period 10 35 30

Reference O�spring 5 17 10

Select Reference Pt 0 1 1

Repair Method 0 1 1

Replace Prob 0.25 0.5 0.5

Reference Init Type 1 1 1

Search Init Type 1 1 1

Object Type 1 1 1

Test Case 10 14 15

Epsilon 0.0001 0.0001 0.001

Frequency Mode 0 0 1

randomly generate an initial reference population in the required number of tries,1 therefore inital populations

are supplied. A total of eight population where generated. There is a population of 20 randomly generated

unique points for satisfying the loose or tight constraints for each molecule. The population of size 50 contains

duplicates of 25 random generated unique points satisfying the respective constraints. The permutations of

the seeds in Table 6 were used in the random generation. Results are presented in Section 5.2.

4.4 Experiment III: Evaluation of Exogenous Parameters in the REGAL System

4.4.1 Motivation and Objective. The impact of exogenous control parameters on the e�ectiveness of

GENOCOP-III has not been extensively studied. Exogenous parameters are those external to the algorithm.

Consider, population size and number of domain constraints. Clearly, if we change the number of domain

constraints, we are solving a di�erent problem. On the other hand, if we change the population size, the

behavior will change, likely resulting in a di�erent answer, but to the same problem.

The experiments in Section 4.3 treated these parameters in an ad-hoc fashion, however, they were

consistent for each group of experiments. Only the seed values were changed within a group. The results

1Based on the ratio of F
S

, it would require 1067 tries to randomly generate just on fully feasible chromosome when using the

tight constraint set for Polyalanine.
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Table 9. Input Parameters for Experiment II, Polyalanine
Parameter none loose loose tight tight tight (relaxed

terminals)

Number Variables 56 56 56 56 56 56

Number NLE 0 0 0 0 0 0

Number NLIE 0 56 56 56 56 48

Number LC 0 0 0 0 0 0

Number DC 56 56 56 56 56 56

Ref Pop Size 20 20 50 20 20 20

Search Pop Size 40 80 100 40 50 40

Number Operators 10 10 10 10 10 10

Total Evaluations 50,000 20,000 50,000 20,000 50,000 50,000

Reference Period 50 40 115 24 75 30

Reference O�spring 5 18 30 10 25 10

Select Reference Pt 1 0 0 1 1 1

Repair Method 1 0 0 1 1 1

Replace Prob 0.25 0.50 0.50 0.50 0.50 0.05

Reference Init Type 1 1 1 1 1 1

Search Init Type 1 1 1 1 1 1

Object Type 1 1 1 1 1 1

Test Case 20 24 24 25 25 26

Epsilon 0.001 0.01 0.01 0.0001 0.0001 0.0001

Frequency Mode 0 1 1 1 1 1

between groups, it seems, were e�ected by the variations in these parameters. There is extremely little

published data on this issue. The success of REGAL for PSP is dependent on managing these parameters'

e�ects. Thus, the objective of this experiment set is the characterization of e�ect of the exogenous parameters

on the REGAL/GENOCOP-III system, at least with respect to the PSP.

4.4.2 Methodology. Michalewicz has publish results using earlier variants of the algorithm (85).

Frequently reported parameters are 70 for population size, .20 for Probability of replacement, and 28 for

number of o�spring generated per \generation". Most experiments ran for 5000 iterations. Given that

GENOCOP is a steady state GA, it was not clear whether this term meant evaluations or generations.

Personal communications with the co-creator of GENOCOP-III, Girish Nazhiyath veri�ed that iterations is

approximately equivalent to generations. Therefore, 5000 iterations equals approximately 350,000 evaluations

with a population size of 70. Previous experiments had produced good results with 20-40,000 evaluations.

Therefore, 100,000 evaluations were used in this experiment set.

It is highly likely the static parameters and the operator probability distribution are confounded. In

attempt to decouple them, the static parameters are tested while the operator frequency control is set to

adaptive. This allows the frequency of the operator to \oat" in response to the needs of the system. After

the other parameters have been analyzed, speci�c operator frequencies can be studied.
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The experiment set consist of a full factorial design using treatment levels shown in Table 10. Some

combinations are not practical, speci�cally, generating more than the reference population size number of

o�spring during a reference population evaluation. The result is total of 540 experiments!

4.4.3 Exogenous Parameter Evaluation Experiments. A total of 540 experimental cells are de�ned

from permutations of the parameter values in Table 10. This is a full factorial design with the except that

permutation with the number of O�springs greater than the Reference Population Size where eliminated.

This combination is not practical because it would force evolution of only the reference population.

Table 10. Exogenous Parameter Evaluation Experimental Values
Parameter (Short Name)

Reference Population Size (Ref Pop) 20 50

Search Population Size (Search Pop) 20 50 70

Periodicity of Reference Population Evaluation (Periodicity) 50 100 150

O�spring per Reference Population Evaluation (O�springs) 10 20 30

Probability of Replacement for Search Population (Probability) 0.05 0.20 0.50

Selection of Reference Point for Repair (Ref Point) 0=random 1=ordered

Repair Method (Repair) 0=random 1=deterministic

The results are subjected to the twelve hypothesis test detailed in Table 11. Results are analyzed in

Section 5.3.

Table 11. Exogenous Parameter Evaluation Hypothesis Tests
Test Number H0, Not Signi�cant H1,Signi�cant

1 Reference Population Size

2 Search Population Size

3 Periodicity of Reference Population Evaluation

4 O�spring per Reference Population Evaluation

5 Probability of Replacement

6 Selection of Reference Point for Repair

7 Repair Method

8 Reference Population Size x Search Population Size

9 Reference Population Size x Repair Method

10 Reference Point Selection vs Repair Method

11 O�spring per Reference Population Evaluation x Replacement Population

12 Probability of Replacement x Repair Method

4.5 Experiment IV: Evaluation of Para-REGAL

4.5.1 Motivation and Objective. Results for the REGAL experiments were far better than expected.

An obvious extension of of serial REGAL is Para-REGAL. However, the behavior of a parallel GA is fre-

quently di�erent than the serial version. Additionally, little is know about the behavior of GENOCOP-III in
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a parallel implementation. Thus the objective of this experiment set is an initial appraisial of Para-REGAL

with respect to the new migration parameters.

4.5.2 Methodology. In terms of input parameters, etc., Para-REGAL inherits the charateristics

of REGAL. Additionally parameters are required for the number of islands, probability of migration and

probability of complete migration. For this experiment set [Met]-enkephalin is used as the test molecule

becuase of its rugged �tness surface. Based on insight from Experiments I{III, an input paramter �le is

de�ed that contains varing values for the di�erent nodes. For example, Island 0 will have no constraints,

Islands 1 & 2 will use loose constraints, and Island 3 will use the tight constriants. to insure randomness,

seeds are taken from a table of random number in Montmogery (87). Also, are results better if the same

total number of eveluations is distributed over multiple processors? To answer this question, the number of

evaluations used in Experiment III, 100; 000, will be divided by the number of islands.

4.5.3 Para-REGAL Experiments. The initial experiment suite is for four islands. The set

f0:0; 0:33;0:66; 1:00g is used for Pm and Pcm. Each island will evolve for 25; 000 evaluations. An initial

suite of 16 experiments are de�ned (Table 12). Results are presented in Section 5.4.

Table 12. Para-REGAL Experiment for Four Islands
Parameter Island 0 Island 1 Island 2 Island 3

Num Nonlinear Constraints 0 5 18 18

Ref & Search Pop Size 50 50 50 50

Periodicity 250 250 250 250

Test Case Number 10 11 14 15

Constraint Set None !'s Only Loose Tight

Num O�spring 20 20 20 20

Replacement Ratio 0.5 0.5 0.5 0.5

Seed 1 10480 15011 01536 02011

Seed 2 14577 25417 09922 20655
Exogenous parameters applicable to all runs

4.6 Summary

After discussion of generic experiment design issues, this chapter has detailed four separate experiment

sets. Experiment I is designed to characterize the performance of the farming model parallel hybrid GA

versus the serial hybrid GA. Experiment II is designed to characterize the use of domain knowledge in the

form of constraints in REGAL, a real-valued GA. Experiment III is designed to characterize and identify

good values for the exogenous parameters used in REGAL. Finally, Experiment IV is designed to evaluate
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migration parameters and compare the performance of Para-REGAL versus the best results found using

REGAL.
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V. Results and Analysis

This chapter contains the summarized results and analyzes the principle experiments conducted as

part of this research. Raw data is not included, but is available in the Auxiliary Volume (59)

5.1 Experiment I: Parallel Hybrid GA

The results from this experiment set is �rst analyzed with respect to e�ectiveness, Section 5.1.1.

The next analysis considers e�ciency, �rst using the serial executions as baseline, Section 5.1.2, and then

comparing with the parallel results, Section 5.1.3. Portions of this experiment set were presented at the 1996

National Meeting of the American Chemical Society (60).

5.1.1 E�ectiveness Analysis. The �rst use of the results from this experiment set is a comparison of

the hybrid GA sub-types. Table 13 presents the �nal �tness values after 2000 evaluations. The trajectories,

de�ned by the current best solution, are consistent! For example, best �tness for a given set of parameters

is the same at the say, 20th generation, regardless of whether the experiment is running to 1000 or 2000

evaluations. Likewise, both serial and parallel executions generate the same �tness trajectory, generation by

generation. This satis�es the correctness requirement.

Table 13. Final Fitness Values for Experiment I after 2000 Evaluations
Algorithm Population Population Population
Sub Type Size 20 50 Size Size 100

FPBald -21.23 -2.62 9.50

FPLam -30.84 -22.26 -15.99

TSLam -28.73 -28.16 -27.68

FPSGA -13.51 23.5487 35.21

TSSGA 3.43 -19.45 -1.43

For both the trajectory and runtime plots, the following labels apply: FPBald for Hybrid GA w/Fitness

Proportional Selection and Baldwinian Minimization, FPLam for Hybrid GA w/Fitness Proportional Se-

lection and Lamarckian Minimization, TSLam for Hybrid GA w/Tournament Selection and Lamarckian

Minimization, TSSGA for SGA w/Tournament Selection, and FPSGA for SGA w/Fitness Proportional Se-

lection. Consistent with other results (35), the population size of 20 produces the best results when using

Fitness Proportional (FP) selection, with or without minimization. One explanation suggests the smaller

size increases selection pressure on the population. Another explanation suggest since the execution runs for

x evaluations, x
pop sizesmall

> x
pop sizelarge

. Thus with the smaller population size, it su�ers more generations,

and, therefore, applications of operators. The population size of 50, on the other hand, produces the best

results when using Tournament Selection (TS). In TS, individuals complete against each other, rather than

the population as a whole inducing even stronger selection pressure than FP. A larger population provides a
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more diverse selection of genetic material from which to select. However, TS usually converges prematurely

when used for PSP. Notice the trajectory for TSSGA terminates after 1300 evaluations in Figure 10. To

summarize, �tness proportional selection, population size 20, and Lamarckian local minimization have been

the most e�ective hybrid GA examined. Therefore, it will be used as the benchmark against which the

e�ectiveness of other re�ned GAs for PSP will be measured.

5.1.2 E�ciency Analysis, Serial. The average run times of the various GA subtypes are presented,

�rst grouped by population size, Figures 13{15, then grouped by subtypes, Figures 16{20. Note that

Figures 13{15 actually contain �ve lines each. The FPSGA and TSSGA lines are buried at the bottom

of each plot. This emphasizes the di�erence in execution time between the minimized and non-minimized

GAs. Regardless, because of greater e�ectiveness, minimized GAs are the focus of this e�ort. At all three

population sizes, the run time increases linearly with the slope increasing as the population size decreases.

This is explained by the smaller population size experiencing more generations and likewise more total

overhead from each generation. When viewed across the population sizes by GA type, Figures 16{20,

the run time increase is also linear. The smaller population size continues to generally require a longer run

time. The slopes of the minimized GAs are steeper and more varied than the non-minimized GAs. The

attening of TSSGA population size 20, Figure 19 is explained by the execution terminating prematurely

after approximately 1300 evaluations because of convergence.
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5.1.3 E�ciency Analysis, Parallel. In this section cost/bene�t aspects of the parallel implemen-

tation are examined. First, an empirical look at the additional overhead cost induced by communication.

Recall that the work performed by the serial implementation is divided in the parallel implementation cleanly

between the client and server nodes. Thus, a client with just one server should execute no faster than the

serial version. In fact, the client-server should actually take longer because of communication cost between

the client and single server.

Ccommunications = TP2 � TS (11)

where Ccommunications is the cost, in time, of the communications and TP2 is the average runtime of the

parallel implementation with 2 nodes (a client and one server) and TS is the average runtime of the serial

implementation. As a unit-less measure of the communications cost, I de�ne the Communication Cost Index

to be the ratio of the Client-Server pair runtime to the Serial implementation.

Communication Cost Index =
TP2
TS

(12)

Figures 21{23 plot the communication cost index values by population size.
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Figure 21. Communications Cost Index, Population Size 20

Speedup is a measure capturing the relative bene�t of solving a problem in parallel. It is de�ned as

S =
TS

TP
(13)
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Figure 22. Communications Cost Index, Population Size 50
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Figure 23. Communications Cost Index, Population Size 100
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where S is the speedup, TS is the time of the best serial algorithm for solving the problem, and TP is

time taken by the parallel algorithm (66). In linear speedup S increases proportionally with the number of

processors p. If S > p, it is called super linear speedup. While sometimes observed, it indicates TS is from a

non-optimal serial algorithm. Speedup for PHGA is plotted by population size in Figures 24{26. E�ciency
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Figure 24. Speedup, Population Size 20
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Figure 25. Speedup, Population Size 50

is a measure of the fraction of the fraction of time for which each processor is usefully employed. It is de�ned
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Figure 26. Speedup, Population Size 100

as

E =
S

p
(14)

where E is the e�ciency, S is the observed speedup, and p is the number of processors. E�ciency for PHGA

is plotted by population size in Figures 27{29. Cost is the product of the parallel run time and the number

of processors. A parallel system is said to be cost-optimal if the cost of solving a problem is proportional

to the execution time of the fastest-known sequential algorithm on a single processor. Since e�ciency is

the ratio of sequential cost to parallel cost, a cost-optimal parallel system has an e�ciency of �(1). PHGA

is reasonably e�cient when the number of processors is roughly half the population size. While, it is not

cost-optimal, it will perform identically to the serial version only faster. Most parallel GAs do not have

this feature of identical behavior. As a result, previously (and expensively) gained insight into exogenous

parameter selection does not transfer to the parallel implementation. This is not a characteristic of PHGA.

5.2 Experiment II: Preliminary REGAL Evaluation

This section presents the results of experiments on two separate molecular models, [Met]-enkephalin

and a 14 residue model of Polyalanine. Portions of this experiment set were presented at the Midwest

Regional Meeting of the American Chemical Society (61, 62), and have been accepted for the proceedings of

ACM's 1997 Symposium on Applied Computing (SAC'97) (63). In previously published results (78), �tness

proportional (FP) selection with binary encoding was shown most e�ective for this particular problem, at
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Figure 27. E�ciency, Population Size 20
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Figure 28. E�ciency, Population Size 50
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Figure 29. E�ciency, Population Size 100

least with respect to [Met]-enkephalin. This selection technique for binary encoding is compared with the

REGAL approach.

5.2.1 [Met]-enkephalin. In general the hybrid GA has been more e�ective than the REGAL

approach in minimizing [Met]-enkephalin with a best average of -28.35 kcal/mol (Table 14) verses -26.38

kcal/mol (Table 15). However, the best value in this experiment set, -30.32 kcal/mol, was a REGAL experi-

ment, using no constraints and Lamarckian minimization. This single example demonstrates a potential for

local minimization incorporated with REGAL. But in general, tighter constrains appear to interfere with

local minimization. That is, a local minima is found during the initial evaluation from which the experiment

is unable to escape. I suspect that as the ratio of feasible space F to search space S gets smaller, the

operators are unable to generate a more �t \feasible" candidate, and thus, escape the local minima.

Table 14. Final minimum energies (kcal/mol) for [Met]-enkephalin, using binary GA

Algorithm Mean Std. Dev. RMSD Best

SGA -22.58 1.57 4.51

Baldwinian -22.57 1.62 3.96

Lamarckian -28.35 1.29 3.33

It is interesting to note that conformers have been identi�ed with values less than the accepted optimal

conformation (CHARMM equivalent of the ECEPP/2 conformation of Li and Scheraga (74)). It is believed

the optimal conformation for ECEPP/2 and CHARMM are di�erent.
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Table 15. Final minimum energies (kcal/mol) for [Met]-enkephalin, using REGAL

Algorithm Mean Std. Dev. RMSD Best

No constraints -24.92 2.99 4.57

No constraints
w/local min -26.38 2.69 4.40

Loose constraints -22.01 2.69 4.25

Loose constraints
w/local min -24.95 4.23 4.26

Tight constraints -23.55 1.69 3.23

Tight constraints
w/local min -17.71 0.50 5.05

5.2.2 Polyalanine. The e�ectiveness of the Binary GA (even with minimization) did not hold

for the larger molecule Polyalanine (Table 16). Signi�cant improvement was observed when the step size

in the conjugate gradient minimization was properly sized for for the larger molecule (another example of

using \domain knowledge"). When examined visually, these conformations did not appear to be forming the

expected �-helix secondary structures. With adequate domain knowledge, in the form of tight constraints,

REGAL performs well on the larger molecule (Table 17). When allowed to reach 150,000 evaluations, the

energy value is almost that of the optimal conformation without relaxation of bond lengths and bond angles.

When examined visually, these conformations de�nitely formed the expected �-helix secondary structures.

Again, local minimization was not e�ective when used in conjunction with constraints. This time, the

di�erence between the results is more substantial.

Table 16. Final minimum energies (kcal/mol) for Polyalanine, using binary GA

Algorithm Mean Std. Dev. RMSD Best

SGA -93.25 10.85 9.67

Baldwinian -103.73 16.5 7.36

Lamarckian -140.60 5.39 12.74

Lamarckian
corrected -308.51 8.26 5.03

5.2.3 E�ciency. The rns conducted in this experiment set were conducted on a variety of platforms.

They include a 368 node Paragon supercomputer, 100 and 200 mhz Silicon Graphics workstation, SUN Sparc

workstations (2, 5, and 20), and SUN Ultra Sparc workstations.The bulk of the e�ort was accomplished in a

common user lab of 46 networked Sparc20 workstations. As is expected, run times (wall clock) varied with

system loading. However, a few general observations can be made.

� Met-enkephalin

{ Lamarckian minimized Binary GA, average run time = 13 hours
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Table 17. Final minimum energies (kcal/mol) for Polyalanine, using REGAL

Algorithm Mean Std. Dev. RMSD Best

No constraints -273.08 13.81 6.25

Loose constraints -336.65 4.50 1.87

Loose constraints
w/local min -309.00 8.19 2.70

Tight constraints -337.64 4.40 0.98

Tight constraints
w/local min -316.47 0.01 1.17

Tight constraints w/
relaxed terminals -338.30 4.24 1.42

Tight, relaxed
150K evals -351.76 0.57 1.40

{ REGAL, average run time = 2 hours

� Polyalanine

{ Lamarckian minimized Binary GA, average runtime = 120 hours

{ REGAL, average run time = 4 hours

While results prove nothing, initial data suggest the REGAL approach scales better than the binary

GA with local minimization. While the above times might seem excessive, it takes years to identify protein

conformations using experimental methods such as crystallography.

5.3 Experiment III: Analysis of Exogenous Parameters for REGAL

This experiment set analyzes the e�ect of the independent static input parameters identi�ed in Sec-

tion 4.4.3 on behavior of the REGAL system for PSP. These parameters are called independent because

they are not tied to a speci�c problem instance unlike, for example, the number of non-linear inequalities.

The parenthetical comments in the following paragraphs indicate the \handle" that can be used to link the

parameter being discussed to the data tables. Summarized data is presented in Table 18. ANOVA2 results

are presented in Table 19. The parameters for the experiments yielding the 5 lowest energies are shown in

Table 20. The plot of the current best trajectory of these 5 experiments are shown in Figure 30.

Analysis 1 considers the reference population size (Ref Pop) parameter. On the average, lower energies

are found in experiments with a reference population size of 50. The average runtime is greater with the

reference population size of 50, which was expected due to the sorting time of the larger population.3 The

2Analysis of Variance, see Appendix F.1 for more details. Concern has be raised about lack of variability because a single

seed set was used. The Kruskal-Wallis H Test (Appendix F.2) was used as an independentmethod to verify the ANOVA results.
The conclusions were the same. Kruskal-Wallis results are not shown

3Hypothesis testing was not done on run times because system loading in the multi-user environment could not be controlled.
They are provided for reference only. However, the large number of experiments tends to dampen out cases were the platform
was heavily loaded. Thus, the data are insightful.
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di�erence in population size was signi�cant at the 95% con�dence level but not at high con�dence levels.

ANOVA results are presented in Table 19.

Analysis 2 considers the search population size (Search Pop). In this test suit, the average �tness

improves as the search population increases, however, the di�erence in population size is not signi�cant at

the 95% con�dence level. Note the trend of average run times increase with the population size shown in

the previous paragraph does not hold.

Analysis 3 considers the periodicity (Periodicity) of the reference population evaluation. That is, the

reference population is evaluated4 every time this set number of evaluations is performed, regardless of which

population has been evaluated. Within the parameters of this experiment set, this input parameter is not

signi�cant.

Table 18. REGAL Input Parameter Analysis, Summary Data
Analysis # Parameter Value Avg Std Dev Avg Std Dev

Fitness Run Time

Overall -24.607 1.99 3.78 1.57

1 Ref Pop 20 -24.29 2.01 3.44 1.66

50 -24.65 1.96 4.01 1.48

2 Search Pop 20 -24.46 1.94 3.76 1.74

50 -24.49 1.97 3.86 1.53

70 -24.57 2.06 3.72 1.45

3 Periodicity 50 -24.72 1.97 3.85 1.72

100 -24.36 2.07 3.86 1.49

150 -24.44 1.90 3.63 1.49

4 O�springs 10 -24.43 1.90 3.85 1.68

20 -24.44 2.03 3.56 1.45

30 -24.79 2.06 4.10 1.55

5 Probability 0.05 -23.80 1.73 3.63 1.38

0.2 -24.78 1.92 3.62 1.48

0.5 -24.95 2.10 4.09 1.80

6 Ref Point Random -24.42 2.04 3.76 1.41

Ordered -24.60 1.93 3.80 1.72

7 Repair Random -25.21 1.87 3.92 1.68

Deterministic -23.81 1.84 3.64 1.46

Fitness is in kcal/mol
Runtime is in hours

Analysis 4 considers the number of o�springs (O�springs) to be generated for the reference population

every time the reference population is \evaluated". Remember that members of the reference population

4This nomenclature is from the GENOCOP-III documentation. It would be more accurate to stay the reference population
is operated upon.
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must be fully feasible, thus there may be no new chromosome added to the reference population. Like

periodicity, this parameter by itself, is insigni�cant.

Analysis 5 considers the probability (Probability) that a repaired candidate solution will replace its

parent in the search population . Of all factors considered, this was the second most signi�cant. Results here

contradict results published by Michalewicz using GENOCOP-III for nonlinear optimization problems(85).

He reports best results with a 0:20 probability of replacement. Of the three values tested, f0:05; 0:2; 0:5g,

these results show best results, on average, with 0:5. Granted, we are discussing two di�erent problems, and

further more, these results are only applicable to the speci�c experiments run. Additional study is needed

to fully characterize this parameter.

Analysis 6 considers the method (Ref Point) used to select the point, or individual, in the reference

population that is used to \repair" a infeasible candidate solution from the search population. The options

are to either select an individual based on a randomly generated number [0:0; 1:0) (Random), or use the

probability distribution of the reference population (Ordered). This parameter by itself is not signi�cant.

Table 19. Phase I Input Parameter Analysis, ANOVA
Source of Variation Sum of Squares DOF Mean Square F0 � = 0:05

Ref Pop 16.28 1 16.28 5.016 * 3.92

Search Pop 1.21 2 0.61 0.1896 3.07

Periodicity 13.09 2 6.545 2.0510 3.07

O�springs 10.98 2 5.49 1.7204 3.07

Probability 137.72 2 68.86 21.5785 * 3.07

Ref Point 4.41 1 4.41 1.3820 3.92

Repair 262.54 1 262.54 82.27172 * 3.9

Ref Pop x Search Pop 1.78 2 0.89 0.2789 3.07

Ref Pop x Repair 15.01 1 15.01 4.7037 * 3.92

Ref Point x Repair 0.52 1 0.52 0.1630 3.92

O�springs x Probability 6.04 4 1.51 0.4732 2.45

Probability x Repair 3.93 2 1.97 0.6158 3.07

Error 1653.01 518 3.19

Total 2126.52 539

* Above indicates the source of variation is signi�cant at the � = 0:05 level. * indicates it is still signi�cant
at the � = 0:025 level. That is, we reject the H0 hypothesis that the population means are equal.

Analysis 7 considers the method (Repair) used to repair the candidate solution from the search popu-

lation. Repair is attempted by generating a linear combination of the candidate solution and the reference

point with a value �. The repair method parameter controls how � is determined. The options are to either

randomly generate values [0:0; 1:0] for � (Random), or repeatedly generate a bisection, � = 2�i 1 � i � 20,

until a fully feasible candidate is generated (Deterministic). This parameter is the most signi�cant source of

variance, with the random option producing the best results.
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Analysis 8 considers the interaction between the size of the reference (Ref Pop) and search populations

(Search Pop). Individually, the reference size is signi�cant, but not the search size. As a source variation,

the interaction between these two factors is insigni�cant.

Analysis 9 considers the interaction between the reference population size (Ref Pop) and the choice of

repair method (Repair). Individually, both of these factors are signi�cant, with the choice of repair method

highly signi�cant. Their interaction is also signi�cant, but only at the � = 0:05 level.

Analysis 10 considers the interaction between the method (Ref Point) used to select the point, or

individual, in the reference population that is used to \repair" a infeasible candidate solution from the

search population and the choice of repair method (Repair). Individually, the �rst factor was not signi�cant

while the second was extremely signi�cant. Their interaction is an insigni�cant source of variation.

Analysis 11 considers the number of o�spring generated (O�springs) generated per reference population

evaluations and the probability (Probability) that a repaired candidate solution will replace its parent in the

search population. Individually, the �rst factor was not signi�cant while the second was extremely signi�cant.

As above, the interaction between the the two factors is insigni�cant.

Analysis 12 considers the probability of replacement (Probability) and the choice of repair method

(Repair). Individually, both of these factors is extremely signi�cant. Surprisingly, the interaction between

the two factors is insigni�cant.

Table 20 shows the parameters and results for the 5 best experiments. Their trajectory is shown in

Figure 30. Notice that the path of the best result, # 95, has the steepest initial decent, then continues to

make modest gains. It would be interesting to visually observe the incremental changes in the conformation

during the run. However, it this time it is not possible as only the initial and �nal conformations are output.

While the analysis of this experiment set provides insight into the exogenous parameters, the conclusion

can only be taken so far. A stronger conclusion can be made for the parameters with binary values, (Ref

Point and Repair) than for the others whose value were heuristically selected. In particular, the system is

sensitive to the replacement probability, additional values should be examined.

5.4 Experiment IV: Analysis of Para-REGAL

The experiments detailed in Section 4.5.3 are summarized in Table 21. The best results were obtained

when both Pm = Pcm = 0:66. Interestingly, in this experiment, the \best" results were not obtained

with the tighter constraints. That is, the best candidate was never found in Island 3 which is where the

tight constraints were active. One possible explanation is that it is more di�cult to generate fully feasible
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Table 20. 5 Best Results Exogenous Parameter Analysis
Exp Ref Search Periodic O�springs Prob Ref Point Repair Fitness Run Time

95 20 50 50 20 0.5 1 0 -31.98 4.56

282 50 20 100 30 0.2 0 1 -31.25 5.28

285 50 20 100 30 0.5 0 0 -31.11 3.59

348 50 50 50 20 0.5 1 1 -30.65 5.11

492 50 70 100 20 0.5 1 1 -29.94 4.72

Reference Point (0=random, 1=ordered)
Repair Method (0=random, 1=deterministic)

Run Time is in hours
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Figure 30. Trajectory Plot, 5 Best Phase I Experiments

candidates using the tighter constraints. With fewer candidates generated, there is simple less exploration

of the search space.

A candidate feasible for the tight constraints is also feasible, in most cases, for the relaxed constraints,

but nor the reverse. A update to the more restrictive subpopulation will be accepted and acted upon by

the more relaxed subpopulation. But the update to the more relaxed subpopulation is likely to not be

admissible into the more restrictive population, thus limiting the diversity in the restricted subpopulation.

Another factor could be the exogenous parameter periodicity (the period at which the reference population

is explicitly evolved). A value of 250 was used in this set of experiments which is larger than that studied in

Experiment III.
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One �nal observation from this experiment, it does not appear that takingm evaluations and distribut-

ing them over n processors (m
n
per island) produces the same result as m serial evaluations. Examination of

trajectory shows the improvement in the energy function to be very �ne; frequently the improvement is on

the order of 10�3 cal/mol. That is, the improvement is in the 6th decimal place. This small step size is a

factor of the real-valued representation and the ruggedness of the �tness function. Therefore, it is believed

that a depth in the number of evaluation, on the order of 50� 100K is required to achieve desired results.

Table 21. Para-REGAL Results with Four Islands
Experiment Number Pm Pcm Average Fitness Minimum Fitness Island(s) of Best Solution

1 0.00 0.00 -21.81 -22.38 0,1,2

2 0.00 0.33 -21.81 -22.38 0,1,2

3 0.00 0.66 -21.81 -22.38 0,1,2

4 0.00 1.00 -21.81 -22.38 0,1,2

5 0.33 0.00 -20.57 -21.62 0,1

6 0.33 0.33 -23.35 -23.45 0,1

7 0.33 0.66 -23.13 -23.93 0,2

8 0.33 1.00 -21.31 -21.52 0,2

9 0.66 0.00 -21.76 -21.92 0,2

10 0.66 0.33 -22.12 -22.71 2

11 0.66 0.66 -25.78 -25.79 0,1,2

12 0.66 1.00 -23.31 -24.24 0,2

13 1.00 0.00 -21.80 -23.35 0,1

14 1.00 0.33 -24.49 -25.16 2

15 1.00 0.66 -22.49 -22.49 0,2

16 1.00 1.00 -22.62 -22.67 0,2

5.5 Summary

The experiment sets show bene�cial result from the approaches proposed in this research. While the

hybrid GA had been the most e�ective technique applied to PSP using CHARMM energy model, it requires

considerable resources5 In Experiment I, the parallel farming model is more e�cient (faster), considerably

reducing wall clock time while producing identical results. However, there are upper bounds on increases

realized by this method, because as the ratio of processors to population size increases, idle time increases.

In Experiment II, results using a real-valued GA implementation,REGAL, verify the feasibility of using

domain knowledge to limit the search . Results are better when \good" domain constraints are included. The

domain constraints considered in the second experiment set are of low �delity. An experienced biochemist

could certainly develop more precise sets. Of course, the constraints could be so tight that the only member

5Considerable resources is a relative concept. Even a 1000 hours of computer time is trivial when compared to experimental
techniques that require years to yield results.

55



of the feasible search space is the optimal solution. But, if they can be de�ned that preciously, the protein

folding problem would are ready be solved!

The GA community has less experience with exogenous parameter selection in real valued GAs, es-

pecially, GENOCOP-III. Therefore, the results of Experiment III are important. From an e�ectiveness

perspective, the size of the reference population matters, as does the probability of replacement and how

repair is performed. At least this is the case with respect to PSP.

The results of experiments on the parallel version of REGAL, Para-REGAL, reinforce the di�erence

usually observed between serial and parallel GAs. In this case, better trajectories were observed in islands

with more relaxed constraints. The next chapter presents overall conclusions and presents issues for further

study from this research.
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VI. Conclusions and Recommendation

This investigation has consumed thousands of hours of computer time conducting several thousand

individual experiments. Additionally, hundreds of hours were spent reviewing the literature and designing

and implementing software. These e�orts are of secondary importance as related to the important con-

tributions of conception, synthesis, design, engineering, and re�nement of several signi�cant solutions to a

particular Grand Challenge problem. These accomplishments would not have been possible without insights

drawn from multidisciplinary sources. The e�orts are grouped into four distinct initiatives, each of which is

discussed in turn.

6.1 Initiative I: PHGA

The Parallel Hybrid GA (PHGA) initiative enhances the performance of previous AGCT e�orts with

hybrid genetic algorithms by implementing a novel parallel architecture. Based on the farming model, PHGA

preserves the e�ectiveness of the hybrid GA while reducing the biochemical researcher's turn around time.

Built with the MPI standard rather than a proprietary communications library, the resulting code is reusable

on a variety of high performance platforms and architectures without any source code changes. Thus, the

researcher can utilize what ever computing resource are available and can easily migrate when new capacity

becomes available.

The implementation is scalable to a number of processors bounded by the population size. However,

past a threshold approximated by half the population, the implementation is not cost-optimal, and e�ciency,

in terms of processor utilization, decreases. Still, this is a powerful tool for PSP!

6.2 Initiative II: REGAL

The REal-valued Genetic Algorithm, Limited by constraints (REGAL), is a strong method for predict-

ing molecular structures. This strength allows a biochemistry researcher to specify as much or as little about

a molecular system as is known. Performance, e�ectiveness for a given level of e�ort, is proportional to the

amount of domain knowledge included. The method of capturing domain constraints is generalized to a form

that handles feasible regions including area from both sides of the trans orientation simultaneously. Thus,

the method can be extended to dynamically adjust the constraints during execution.1 For static constraints

not involving the trans orientation, computationally more e�cient linear methods can be used.2

In this experiment set, it was noted that the binary GA was less e�ective on the larger Polyalanine

molecule, regardless whether local minimization was used or not. This behavior can be explained using the

1Actual implementation is out of scope for this investigation because research is required into appropriate control metrics.
2Limit the dihedral angle's range to a lower bound greater than �� and an upper bound less than �.
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fundamental theorem of genetic algorithms because the molecular representation used causes the \building

blocks" to be longer in Polyalanine. The theorem (41) shows that the number of shorter, not longer,

building blocks increase exponentially in subsequent generations. In REGAL, this tendency is overcome by

constraints.

6.3 Initiative III: Examination of Exogenous Parameters

Considerable research has been applied to the determining optimal exogenous parameters values, i.e.

crossover rate, mutation rate, for classical binary genetic algorithms. Less data is available for real-valued

GAs, especially GENOCOP-III. Optimal parameters for applications based on GENOCOP-III are especially

hard to determine because it incorporates the best of many Evolutionary Computation disciplines. While

the results for this initiative are with respect to a speci�c problem (PSP), other GA researcher may �nd

them insightful for problems characterized by high dimensional rugged �tness landscapes. The greatest single

insight is the superiority of a random verses deterministic choice of � when repairing infeasible candidate

solution by means of a linear combination with some reference point.

6.4 Initiative IV: Para-REGAL

Most parallel GAs perform better than their serial counterparts simply because the collective popu-

lation undergoes more operations. Taken to extremes, such an algorithm becomes a exhaustive search of

the solution space that yields the optimal solution. By giving the researcher an option to impose di�erent

constraints at each island, Para-REGAL more closely matches the hierarchical folding observed in proteins

during molten globular states. That is, the constraints active at a particular processor, could be de�ned to,

say, exploit the knowledge the a speci�c subsequence forms, say a, �-helix. A novel probabilistic migration

concept balances exploitation of a speci�c region of the search space with exploration of the entire search

space. Probabilistic migration also balances the algorithm with the message capacity of the underlying

parallel or distributed architecture.

In Para-REGAL, assuming an adequately high probability of migration, each node maintains a near

real time view of its progress verses the progress of other nodes. This knowledge has the potential to

dynamically e�ect system behavior by modifying constraints or other control parameters.

The contribution of each of these initiatives to the AGCT GA Toolkit is shown in Figure 31.
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6.5 Recommendations

The success of using binary encoded and real-valued GAs for the two proteins suggests their application

to more complex protein folding problems. Currently, preparing the inputs in the format acceptable to the

current implementations is manual and error prone. During the Summer of 1996, interns worked very hard

to document, streamline, and possibly automate the preparation process. In spite of this e�ort, preparing

a new molecule for study is di�cult. Perhaps this is the incorrect approach. The molecular data structures

used in the current implementations have a number of aws. The �rst is a dependency on a speci�c atom

ordering. This ordering is not consistent with the commercial software packages used to generate the amino

acid sequences representing the molecule in question. Unfortunately, there is su�cient variability in the

behavior of the commercial packages that a transform process is not feasible. Separately, the current data

structures do not have methods for hierarchical understanding of the system in question. The representation

is strictly at the atom level, there is no concept of composite objects such as residues, sequences, or other

molecules. Much of the domain knowledge available of exploration is in terms of these composite objects.

Therefore, I recommend that e�ort be applied to the development of an object oriented molecular model.

In applying GAs to more and more complex proteins, the use of constraints may be the only way of

obtaining acceptable solutions due to the exponentially increasing number of local and global optimal. The

constraints used in the research were developed manually. There is a wealth of knowledge to be discovered

from sources such as the Brookhaven Protein Data Bank. There is a need for data mining tools to classify

knowledge from which to form constraints. Development of such tools should include researchers from both

the AI and biochemistry �elds.

My characterization of the exogenous input parameters with respect to REGAL was the �rst step.

The question of optimal operator frequency was deferred by using the adaptive option. Now that there

is insight into optimal values for the input parameters, a study of the operators is in order. In addition,

local minimization which is e�ective with a binary encoding, should be even more e�ective in a real-valued

encoding. Initial results suggest local minimization causes the execution to become trapped early-on in a

suboptimal minima. An interesting approach would use local minimization as an operator.

6.6 Summary

This chapter shows my research following two separate GA tracks. The �rst extends previous research

in binary GAs in a signi�cant way. The second track has been into virgin territory, at least as far as molecular

structure predication is concerned. The result, I think, is a quantum jump in the applicability of evolutionary

computation as a solution to a problem of large dimension. The recommendations indicate additional

graduate research which should result in substantial contributions to DOD computational technology.
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Appendix A. Background on the Protein Folding and Protein Structure Prediction Problems

This appendix contains background material on the protein folding and protein (or polypeptide) struc-

ture prediction problems, most of which has been presented in previous AFIT theses, particular Brinkman (5)

and Gates (35). Section A.1 de�nes terminology in the biochemistry domain. Section A.2 describes the ex-

pensive experimental techniques used to determine the structure of proteins. Finally, Section A.3 examines

various models used to predict the structure of polypeptides and proteins.

The protein folding problem (PFP) has been recognized as a National Grand Challenge problem in

biochemistry and high-performance computing (11). The challenge is to �nd a method to predict the three-

dimensional topology of a protein based on the sequence of its components. A solution, which would provide

knowledge about the function(s) of individual proteins, is also the �rst step toward solving the inverse folding

problem (IPFP) (8, 71). The inverse folding problem is to determine a sequence (possibly more than one)

that fold to a speci�ed three-dimensional structure.

The di�erence between the two problems is best characterized by the ability a solution to either

would provide: a PFP solution would enable the evaluation of many proteins in a search for one with

a speci�c property or function; an IPFP solution would provide a mechanism to design a protein with

speci�ed characteristics (8:25{26). Possible applications include: pharmaceuticals with few or no side e�ects;

energy conversion and storage capabilities (similar to photosynthesis); biological and chemical catalysts

and regulators; angstrom scale information storage; and possible optical/chemical shielding from harmful

radiation sources (8:25) (71:5) (93).

A.1 Introduction to Proteins and Associated Terminology

Proteins (polypeptides) are linear sequences of the 20 naturally occurring amino acids. Each amino

acid consists primarily of three common backbone atoms (a nitrogen and two carbons [N�C�-C ]) and a

distinct combination of atoms and covalent bonds, called the side-chain (Si), connected to the C� carbon

atom. A particular protein is de�ned by a unique amino acid sequence known as the primary structure of

the protein (8:24)(71:2)(69:49).

As the amino acids form into proteins via peptide bonds, they give up a water molecule. The linked

amino acids are called residues. Figure 32 depicts a generic protein composed of three residues (amino

acids). In most context, the terms amino acid and residue are used interchangeably. The primary structures

of approximately 50,000 naturally occurring proteins are currently known and this number is expected

to double every year, due largely to the Human Genome Project and the ease with which sequences are

experimentally determined (71:5)(91). In fact, the sequence determination and also fabrication is fully

automated.
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Figure 32. A Three Amino Acid Protein

Subsequences of proteins tend to exhibit regular patterns. Two common patterns are �-helices and

�-sheets. These describe the secondary structure of a protein (8:24). Secondary structures result only when

at least four or �ve consecutive amino acid residues have similar � and  values (57). Some researchers are

investigating the utility of predicting secondary structure as the �rst step of tertiary structure prediction

(69:50). This technique has had limited success. The problem is that even though certain residues are found

more frequently in speci�c secondary structure, the greatest preference is only twice that of other secondary

structures. In most cases, the preference is much smaller (108:422). Table 22 identi�es the values for (�;  )

angle pairs that according to Horton (57) ideally de�ne commonly occurring secondary structures.

Table 22. �;  Pairs of Common Secondary Structures
Secondary Structure phi(�) psi( )

� helix (right handed) -57 -47

� helix (left handed) 57 47

310 helix (right handed) -49 -26

Antiparallel � sheet -139 235

Parallel � sheet -119 113

Collagen helix -51 153

Type II turn (second residue) -60 120

Type II turn (third residue) 90 0

Fully extended chain -180 -180

The three-dimensional structure of a protein is the major determinant of its function. This three-

dimensional shape is called the tertiary structure or conformation of the protein. Proteins assume their
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Figure 33. Protein Bond Length

native conformation, which is unique and compact, in their natural biological environment (typically in

aqueous solution, at neutral pH and 20{40� C) (8, 71). A protein in its native conformation is only slightly

more stable than the various conformations with marginally higher energies. Normally, there is only a 10

kcal/mol energy di�erence between the completely folded and unfolded conformations. This single fact is

responsible for the major di�culty of the protein folding problem (8:24{25) (71:2{4) (69:50).

There are two principle coordinate systems used to identify the position of the atoms in a molecule.

The Cartesian coordinate system uses a three dimensional coordinate (xi; yi; zi) , 1 � i � n, where n is the

number of atoms in the molecule. An arbitrary atom, usually C�1 is assigned to the origin. This system

is most useful to compute the distance, dij =
p
(xi � xj) + (yi � yj) + (zi � zj), between two atoms. With

this system each molecule has 3n degrees of freedom.

Internal coordinates is the other coordinate system. The dihedral angle approach de�nes position of all

atoms in a protein from the position of one atom (usually at the origin), the bond length of each covalently

bonded pair of atoms, the bond angle formed by each triplet of bonded atoms, and the dihedral angle formed

by each bonded group of four atoms (see Figures 33 - 35). Given this set of parameters, every protein

has 3n � 6 degrees of freedom where n is the number of atoms. However, the bonds and bond angles are

relatively rigid, therefore the independent dihedral angles are left as the only dominant factor to determine

the tertiary structure of a protein and the degrees of freedom are reduced by a factor of approximately 2/3

(8:26) (69:50).

Each amino acid contains a �,  , and ! dihedral angles and zero or more �i dihedral angles as shown

in Figure 32.
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If we discretize the domain of the dihedral angles so that there are d possible values, then the size of the

search space is given by dN where N is the number of independently variable dihedral angles. Given a very

coarse 20� discretization of the 0 � 360� dihedral angle domain and a small protein with 24 independently

variable dihedral angles, the search space contains 1824 � 1:3�1030 conformations. Table 23 shows the time

required to enumerate the search space on current and envisioned high performance computers (under the

optimistic assumption of one evaluation per clock cycle)(107:7)! (Giga-, Tera-, and Peta-FLOP computers

perform 109; 1012, and 1015 oating point operations per second, respectively) Therefore, if we hope to �nd

the single native conformation of a protein, we must have access to e�cient search algorithms that severely

prune the search space.

Table 23. Enumeration Time of a 1:3� 1030 Search Space at One Solution per Clock Cycle
Computer Speed Execution Time (years)

1 GigaFLOP � 41 trillion
1 TeraFLOP � 41 billion
1 PetaFLOP � 41 million

A.2 Experimental Tertiary Structure Determination

In comparison with the number of known protein sequences, the number of known native conforma-

tions at high resolution is extremely small (less than 4000). The tertiary structures of these proteins have

been determined experimentally using either X-ray crystallography or nuclear-magnetic-resonance (NMR)

spectroscopy. These techniques are inadequate for the task because they take up to several years to obtain

results for a single protein (8:25)(71:5). Thus, the quest is on for a method to accurately predict the structure

without actually observing it. Even if this is not accomplished, a method that predicates the position of the

backbone atoms can reduce the time required for experimentally determination to less than a year.

A.3 Tertiary Structure Prediction (PFP)

To reduce the gap between the number of known protein sequences and native conformations, we need

to be able to reliably predict the tertiary structure of proteins in a reasonable amount of time. Exact versions

of the classical methods discussed next are theoretically capable of �nding the native tertiary structure of

any protein. In practice, the computational cost of the calculations prohibits the use of these exact methods.

The classical methods that are computationally viable are typically relaxed formulations that ignore the

high-order interaction terms. The applicability of the other prediction methods discussed below is severely

limited.
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A.3.1 Classical Prediction Methods. Molecular dynamics is a technique that attempts to simulate

the protein folding process. The protein is treated as an N-body simulation and Newton's motion equations

are solved to determine the location of all the atoms at discrete points in time. Molecular dynamics faces

two major di�culties in its attempt to fold proteins. First, the number of atoms that must be simulated is

very large:

1. Small proteins contain hundreds of atoms.

2. Larger proteins can be composed of several ten-thousands of atoms.

3. Thousands of atoms must be added to simulate the surrounding solution.

Second, the thermal oscillations of bonded atoms have a period between 10�14�10�13 seconds. Simu-

lation time steps in the femtosecond (10�15 sec) range are required to accurately account for these harmonics.

These two factors have limited molecular dynamics simulations to less than a few nanoseconds (10�9 sec),

even on today's fastest supercomputers. That time-frame is ten orders of magnitude too short to simulate

the folding process of most proteins (8:27)(71:6{7). Using an extended-atom representation is one method

that can greatly reduce the impact of these two problems. The extended-atom representation combines hy-

drogen atoms with the heavier atoms they are bonded to. This representation generally halves the number

of \atoms" in the problem and allows the size of the simulation time steps to be increased (6:189).

The energy minimization approach assumes that proteins, like other physical systems, assume that

state which minimizes total energy in the system (however, this assumption is not universally accepted

(58)). There are three types of energy minimization methods that di�er by their time complexity and the

accuracy of their calculations. Ab initio methods calculate the energy exactly. Semi-empirical methods

eliminate the non-dominating interaction integrals from the calculation. Force-�eld methods simply account

for the pairwise interactions between atoms with an appropriate parameterization that implicitly accounts for

multi-particle interactions (71:6). Table 24 compares the time complexity of these three energy minimization

models and gives example execution times for a moderately sized protein (n = 1000) assuming the individual

component calculations take one nanosecond (10�9 sec).

Table 24. Time Complexity of Energy Minimization Methods
Energy Calculation Time Time Estimate

Method Complexity for n = 1000

ab initio O(n5) 11.5 days
semi-empirical O(n4) �O(n3) 17 min - 1 sec
force-�eld O(n2) 1 msec

CHARMM and ECEPP are examples of force �eld energy models. The ECEPP/2 energy model is

shown in Figure 36. Its four terms represent the energy due to dihedral angle deformation, non-bonded

interactions, electrostatic interactions, and hydrogen bond energy respectively. ECEPP is the most widely
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Where

� D is the set of 4-tuples de�ning ! and � dihedrals,

� N is the set of non-bonded atom pairs,

� H is the set of hydrogen bonding atom pairs,

� rHX is the donor-acceptor distance,

� rij is the distance between atoms i and j,

� �ijkl is the dihedral formed by atoms i; j; k; and l,

� qi is the partial atomic charges of atom i,

� the U0ijkl 's, nijkl's, Fij's, �ij's, r0's, and D are empirically determined constants.

Figure 36. ECEPP/2 Energy Model as Implemented by AGCT

used energy model in PSP research. Our initial test molecule, Met-enkephalin, the accepted native structure

has been identi�ed by minimizations on the ECEPP model. It is a polypeptide speci�c energy model, thus

it has limited utility for Wright Labs research into novel materials. The CHARMM (6) energy model is

shown in Figure 37. The �ve terms (which we denote EB, EA, ED, EN , EN 0) represent the energy due

to bond stretching, bond angle deformation, dihedral angle deformation, non-bonded interactions, and 1-4

interactions, respectively. Other terms are available but are not implemented because their contributions

are insigni�cant.

A.3.2 Other Prediction Methods. Structure prediction by homology attempts to align the sequence

of a protein with an unknown tertiary structure with one whose native conformation is known (71). It has

been observed that if the sequences are similar, then the conformations are frequently nearly identical. An

extension of homology, called sequence-structure alignment, builds a partial monotonicmapping directly from

the sequence of the unknown protein to the known tertiary structure of the similar protein. The di�erences

between the two structures are usually surface characteristics built upon the same core structure. Both of
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Where

� B is the set of bonded atom pairs,

� A is the set of atom triples de�ning bond angles,

� D is the set of atom 4-tuples de�ning dihedral angles,

� N is the set of non-bonded atom pairs,

� N 0 is the set of 1-4 interaction pairs,

� rij is the distance between atoms i and j,

� �ijk is the angle formed by atoms i; j; and k,

� �ijkl is the dihedral angle formed by atoms i; j; k; and l,

� qi is the partial atomic charges of atom i,

� theKrij 's, req's,K�ijk
's, �eq's,K�ijkl 's, ijkl's, Aij 's,Bij 's, and " are empirically determined constants

(taken from the QUANTA parameter �les).

Figure 37. CHARMM Energy Model as Implemented by AGCT
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these methods are severely limited by our tiny database of currently known protein structures. They are

also incapable of predicting the native conformation of proteins with novel structures (71:7{9).

Simpli�cation techniques are used as methods to reduce the conformational search space to a size

that will to today's algorithmic search strategies (8). Lattice models reduce three-dimensional space to a

structured grid, where atoms can only be placed on the grid points. The grid is designed to accommodate

the typical connections observed in real proteins. In such a discrete search space, the protein can be modeled

as a walk on the lattice points, thus allowing for classical search techniques. The disadvantage is an obvious

lose of �delity by attempting to represent a continuous domain with a discrete approximation. Further

simpli�cations have been obtained by reducing or eliminating the explicit representation of side-chains (71:9{

10). Dropping the side-chains will reduce the number of variable by up to one half. The optimal "fold" can

be de�ned with just the backbone representation. But the minimal energy conformation must also consider

contributions from the side chain.
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Appendix B. Background on Genetic Algorithms

This appendix is a background discussion of genetic algorithms (GAs). Most material has appeared

in previously AFIT theses, Brinkman (5), Dymek (23), Gates (35), and Merkle (77). Section B.2 provides a

historical context for evolutionary algorithms. Sections B.3 through B.5 present the theory and mechanics

of simple GAs (SGAs), messy GAs (mGAs), and fast messy GAs (fmGAs) respectively. Finally, Section 2.5

describes techniques used to parallelize genetic algorithms.

Genetic algorithms (GAs) are a stochastic search technique loosely based on natural evolution and

the Darwinian concept of \Survival of the Fittest" (41:1)(56). A generalized genetic algorithm consists of

a population of encoded solutions that are manipulated by a set of operators and evaluated by some �tness

function that determines which solutions survive into the next generation.

For our purposes, search and optimization techniques fall into two broad categories: deterministic (a

combination of calculus-based and enumerative) and stochastic (random)methods (41:2). Greedy algorithms,

hill-climbing, calculus-based methods, and branch and bound tree/graph search techniques are all examples

of deterministic approaches (4). These methods have been successfully used to solve a wide variety of

problems. However, there is an even greater number of large dimensional problems that are discontinuous,

multi-modal, or NP-complete where deterministic methods are ine�ective (41:3{6)(31, 34). The main short

coming for deterministic methods is their requirement for some amount of problem speci�c knowledge to

direct or limit the search. For example:

1. Hill-climbing algorithms are limited unimodal functions

2. Greedy algorithms assume optimal sub-solutions are always part of the optimal solution (4:80)(65)

3. Calculus-based methods require continuity (68:167)

4. Branch and bound search techniques need problem speci�c heuristics/decision algorithms to limit the
search space (34, 95)

A partial list of problem characteristics that can make deterministic search techniques unsuitable for a

particular problem includes: multi-modal and/or discontinuous solution spaces, exponential search spaces

(NP-complete problems), and limited domain knowledge (no heuristics). Problems that exhibit one or more

of these characteristics are called irregular (67).

Stochastic search and optimization approaches (simulated annealing, evolutionary strategies, evolu-

tionary programming, genetic algorithms, Monte-Carlo techniques) have been developed as an alternative to

deterministic techniques (41, 82). The only requirements for stochastic methods are a function that assigns

�tness values to possible solutions and an encode/decode between the algorithm and problem spaces. Al-

though these methods cannot guarantee the optimum solution, in general they can provide good solutions to a

wide range of problems that may be irregular and/or exponentially too large dimensionally for deterministic
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methods (41:6{7)(65). Simulated annealing and Monte-Carlo techniques, in addition to GAs, are frequently

applied to the PSP problem.

This appendix reviews the current literature on genetic algorithms starting with a short historical

perspective of evolutionary algorithms in section B.2. Sections B.3, B.4, and B.5 discuss the rationale and

mechanics of simple GAs, messy GAs, and fast messy GAs respectively. Finally, section 2.5 summarizes the

current state of parallel genetic algorithms.

B.1 Brief History of Evolutionary Algorithms

Evolutionary models based on natural selection and genetic theory started appearing during the late

1950s and early 1960s. The �rst working models were computer simulations of genetic and biological systems.

The idea of using algorithms that model natural evolution as search and optimization techniques began in the

late 1960s and 1970s (41:89{104). The class of methods called evolutionary algorithms (EAs) is composed

of three main categories based on that early work: Evolutionary Programming (EP), Genetic Algorithms

(GAs), and Evolutionstrategie (Evolution Strategies, ESs) (3, 17) (41:104{106). However, this taxonomy

is not universally accepted. Many authors categorize only EP and ESs as Evolutionary Algorithms, and

put GAs in a separate category by themselves (30:24). Even though simulated annealing (SA) is based

on thermodynamics, it's often associated with evolutionary algorithms because it uses a mutation operator

(105:17). However, SA fail other \test" for inclusion with EA's because it operates on a single candidate

solution rather than a population. Also di�cult to categorize are hybrid combinations, such as GAs with

deterministic local search or GAs with novel data representations. Such algorithms are simply called EAs

(83).

Fogel, Owens, and Walsh �rst proposed the technique known as evolutionary programming. Evolu-

tionary programming tries to generate computational biological evolution through a process that allows the

survival of organisms that respond appropriately to a given environment. That is, it attempts to evolve

a Finite State Machine (FSM). It has been applied to problems such as sequential symbol prediction and

process control. EP usually operates on the components of abstractions such as �nite state machines or

programming languages (3) (31) (32).

Evolution strategies was conceived by Ingo Rechenberg and Hans-Paul Schwefel at the Technical Uni-

versity of Berlin while they were searching for optimal airfoil shapes. The original formulation consisted of

a one-member population that was operated on by mutation only. The representation consisted of a pair of

real-valued vectors (V = hx; �i) where the �rst vector, x, represents a solution and the second vector, �, is

a vector of standard deviations. The mutation operator creates a new individual at the t generation using a
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normal distribution with zero mean as follows:

xt+1 = xt + N (0; �) (17)

Various re�nements have been made to this original design including population sizes greater than one,

recombination operators, and dynamic changes to the vector � (84:160{164)(3).

B.2 Origins of Genetic Algorithms

John Holland's work on adaptive systems is recognized as the fundamental beginning of genetic algo-

rithms. Previous researchers had used computers to simulate evolutionary systems, and Fraser even tried to

optimize a phenotype1 function, but nobody before Holland recognized the role that nature's evolutionary

process could play in search and optimization (41). The embarkation point for all GA research is Holland's

\Adaptation in Natural and Arti�cial Systems" (55) which established the mathematical basis for GAs, in-

cluding the then unnamed Schema Theorem or Fundamental Theorem of Genetic Algorithms, discussed in

Section B.3.3, and generalized schemes for reproduction, crossover, mutation, and inversion (41:89{92).

Three other names have come to be synonymous with GA research: Kenneth A. De Jong, David

E. Goldberg, and John J. Grefenstette. De Jong's dissertation (18) put Holland's theory to the test and

introduced GA infrastructure that is still in use today (a suite of test functions and performance measures).

Although his dissertation focused on function optimization, most of his work to date concerns his broader

interest in machine learning (103, 19, 20). Goldberg began by applying genetic algorithms to machine

learning and optimization problems. His most recent e�orts include work on optimal GA population sizes

and alternate GA paradigms (messy GAs and fast messy GAs) to combat deceptive problems (41:387{389)

(45, 43). Grefenstette is probably best known for his genetic algorithm implementation, GENESIS, which

has been used as a basic GA workbench by many researchers, including those at AFIT (51). He has also

worked on optimal GA parameter sets and machine learning using genetic algorithms (49, 53, 50, 52).

B.3 Simple Genetic Algorithm (SGA)

Simple genetic algorithms are based on theories of natural genetics and therefore share some of the

same terminology. Figure 38 illustrates the following terms. A string or chromosome contains genes that

encode a solution to a particular problem. A locus and allele are associated with the gene. The locus, or

position of a gene generally determines problem association. A gene is given only one value or allele at a

1The term phenotype refers to the traits expressed by an individual, in this case the value returned by a function. Contrast
this with genotype which refers to the traits that de�ne the individual, for example the parameters of the function
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time from a set of values (the alleles) allowed for that gene. A bag of strings is called a population. A genetic

algorithm evolves populations toward better solutions of the encoded problem by generations.

{ -- Chromosome (String)
-- Chromosome (String)

-- Chromosome (String)

Locus
(Position)

1 2 3 4 5 6 7 8 9 10

Allele (Value) = 0

Allele (Value) = 1

1 0 1 1 1 1 0 0 1 0
1 0 1 0 0 0 1 1 1 0
0 0 1 1 1 1 1 0 0 0
0 1 0 0 1 0 1 1 1 1

0 0 1 1 0 1 0 1 1 0
00 0 1 0 1 0 1 1 0

1 0 1 1 0 0 0 1 0 1
1 0 0 0 0 1 1 1 1 1
0 1 1 1 0 1 1 0 0 0
0 1 1 0 0 1 0 0 1 0Population

Figure 38. Simple Genetic Algorithm Data Structures and Terminology

Most SGA implementations use strictly binary encodings of the problem parameters, usually in a form

such that xmin corresponds to a string of all 0's, xmax corresponds to a string of all 1's and there is a

linear mapping of all values between xmin and xmax. Some problems may bene�t from the use of Gray code

parameter encoding (41:101). In Gray code, the encoding of successive integers di�er by a single bit (66:40). It

improves a mutation operator's chance of making incremental improvements, thus increasing the exploitation

of favorable portions of the search space. Higher cardinality encodings have also been investigated for certain

other problems, most notably combinatoric problems (92, 106). The problem encoding is a very important

design decision in the formulation of a genetic algorithm to solve a speci�c problem. Binary o�ers the

greatest domain independence while other representations are often more \natural" for, but limited to, a

speci�c problem.

B.3.1 Simple Genetic Algorithm Operators. The three standard operators associated with simple

genetic algorithms are selection, crossover, and mutation (41, 84). Above-average individuals of a population

are selected to become members of the next generation more often than below-average individuals. Crossover

recombines pieces of solutions to test di�erent combinations of existing solutions. In the absence of other

operators, selection and crossover will eventually force a population of solutions to converge to a single

solution (41:14) (47). Mutation is an operator designed to encourage diversity in a population so that

convergence occurs more slowly and more of the solution space can be explored.
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Figures 39 and 40 illustrate the function of single-point crossover and bitwise mutation respectively

on binary encoded strings that are ten bits long. Crossover operates on two strings, called the parents, to

create two new strings, called the children. After two parents and a crossover point have been arbitrarily

chosen, the bits after the crossover point are exchanged to create the children. Mutation is a unary operator

that takes one string as input, arbitrarily chooses a bit position within the string, and changes the bit in

that position to the opposite value. Many other crossover and mutation operators are possible, and indeed

necessary, to exhibit di�erent recombination characteristics and operate on alternate encodings (106, 112).

CROSSOVER
POINT

0 011101110

01 1 10 0 1 0 1 1PARENT #1

PARENT #2

0 111101110

0 01 10 0 1 0 1 1CHILD #1

CHILD #2

Figure 39. Single-Point Crossover

MUTATION
POINT

0 110110100

10 0 1 0 1 1 0 1 1INPUT

OUTPUT

Figure 40. Bitwise Mutation

Figure 41 represents the operation of a proportional selection operator, called roulette-wheel selection,

on two di�erent populations of four strings each. Each string in the population is assigned a portion of the

wheel proportional to the ratio of its �tness and the population average �tness. In the �rst case where the
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Figure 41. Roulette Wheel Selection
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�tnesses are equal, each string is given an equal share of the wheel (it is equi-likely that any of the four

strings is selected for the next generation). In the second example, S1 is twice as likely to be selected for

the next generation as S2, which is twice as likely to be selected into the next generation as either S3 or

S4. As with crossover and mutation, many other selection operator variations are possible, each with its

own characteristic e�ect on convergence. Rank-based and tournament are notable selection operators, and

the elitist strategy is a modi�cation that can be used with any selection operator (41, 105, 110).

The three operators (crossover, mutation, and selection) and an evaluation function are assembled

according to the pseudo algorithm shown in Figure 42 to create a simple genetic algorithm. Figure 43 is a

graphic representation.

1. randomly generate initial population
2. evaluate �tness of all population members

for i = 1 to the maximum number of generations and
not some other stopping condition

3. perform selection
4. perform crossover
5. perform mutation
6. evaluate �tness of all population members

end loop

Figure 42. Pseudo Algorithm for Simple GAs

1

2

3

4

P(t + 1)

µ−1

µ

1

2

3

4

P(t)

µ−1

µ

Mutation
Recombination

Selection

Figure 43. Simple Evolutionary Algorithm (GA)
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B.3.2 Simple Genetic Algorithm Parameters. The most di�cult part of genetic algorithms is

selecting a parameter set that will generate the best performance (e�ciency and e�ectiveness). E�ciency is

a measure of the computer resources (cpu time, memory) required to obtain a solution. E�ectiveness relates

the solution quality of various algorithms. Both measures are relative to the speci�c problem being tackled

and tradeo�s can be made between the two.

Some interrelated SGA parameters include: population size, crossover probability, and mutation prob-

ability. Theoretical analysis and empirical studies have been accomplished to formulate estimates of what

each of these parameters should be to encourage a robust search that terminates with a near-optimal solution

(42, 99). While these two particular studies seem at odds with each other, their conclusions are based on

entirely di�erent measurements of GA progress. Scha�er's empirical study is aimed at maximizing on-line

performance or progress toward optimal solutions (e�ciency) without regard for the �nal solution. Gold-

berg's theoretical work makes conservative choices to establish con�dence levels for the optimality of a �nal

solution (e�ectiveness) and ignores the astronomical resource costs required to achieve it.

Many relationships have been observed between parameter settings and performance. Increasing the

population size generally improves the �nal solution, however the increase in execution time becomes pro-

hibitive (18, 40). Population size has been shown to exhibit an inverse relationship with mutation rate and,

to a lesser extent, crossover rate (99:55). Although there is no evidence so far of any correlation between

crossover and mutation probabilities it is generally accepted that using crossover without mutation is insuf-

�cient for a robust search (25, 65, 100). However, it has been postulated (especially from the other branches

of evolutionary algorithms) that mutation is the only necessary operator (30, 100). Other researchers are ex-

amining the e�ects of changing parameter settings during GA execution, either on some prede�ned schedule

or possibly by monitoring GA metrics during the run (16, 28).

B.3.3 Mathematical Theory of How (Why) Simple GAs Work. Schemata are templates that de�ne

sets of strings with the same values at certain string positions and are represented using an additional don't

care symbol (*) (41:19,29). For example, the schema *101 represents the set of strings f0101, 1101g and

the schema 1*0*01 de�nes the set f100001, 100101, 110001, 110101g. The de�ning length (�(H)) and order

(o(H)) are two values associated with a particular schemaH. The de�ning length of a schema is a measure of

the distance between the �rst and last �xed positions. The order of a schema is the number of positions with

�xed values. Using the sample schemata from above �(�101) = 4�2 = 2, o(�101) = 3, �(1�0�01) = 6�1 = 5,

and o(1 � 0 � 01) = 4.

The Schema Theorem, represented by
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m(H; t+ 1) � m(H; t) �
f(H)
�f

�
1� pc

�(H)

l � 1
� o(H)pm

�
; (18)

establishes a lower bound on the number of representatives schema H will have in the next generation

(m(H; t+ 1)) based on the:

1. number of representatives in the current generation (m(H; t)),

2. �tness of schema H vs the population average �tness ( f(H)

�f
),

3. string length, de�ning length, and probability that schema H will be destroyed by crossover (pc
�(H)

l�1 ),
and

4. order and probability that schema H will be destroyed by mutation (o(H)pm).

Although it would appear that genetic algorithms operate only on the speci�c strings in a population,

it has been shown that many of the 2l schemata in each string are processed simultaneously (implicit

parallelism (55:71{72)(41:40)). The Fundamental Theorem of Genetic Algorithms (Schema Theorem) states

that all schemata will receive representation in the next generation proportional to the ratio of their �tness

to the average �tness of the population. This representation is reduced by the amount of disruption that

crossover and mutation can cause to a schema. More succinctly,

short, low-order, above-average schemata receive exponentially increasing trials in subsequent
generations (41:33).

B.3.3.1 Complexity Analysis. Using the standard SGA operators, the time complexity of

selection, crossover, and mutation are generally O(nl) where n is the population size and l is the string length.

Given a �xed number of generations, SGA execution time is O(nl) (21). However, the time complexity of the

�tness function for real-world problems (expressed as some function of the string length and problem space

parameters) usually dominates the time to execute the genetic algorithm control sequence (88), therefore

great care should be taken in its analysis and design.

It is easy to see that the space complexity of a simple genetic algorithm is also O(nl) because the

population of solutions has to be stored. However, the space complexity can also be a�ected by the data

structure requirements of speci�c problems. For example, a function that relies on a lookup table to evaluate

solutions requires more space. If that space is related to the problem size in a way that make the lookup

table grow faster than the population size and string length, then the problem space requirements dominate

the space complexity of the entire GA algorithm.
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B.4 Messy Genetic Algorithm (mGA)

Genetic algorithms are designed to take advantage of the building block theory (33, 41, 55). The main

idea is that small pieces of a solution which exhibit above average performance are combined to create larger

pieces of above average quality, which are themselves recombined into larger pieces, and so forth.

Simple genetic algorithms su�er from the fact that the \pieces" that form the building blocks must

be put next to each other explicitly in the �xed encoding or else they are more likely to be disrupted by

crossover. This problem is magni�ed when competing schemata (schemata with di�erent values at similar

de�ning positions) de�ne locally optimal solutions. Deception occurs when a locally optimal building blocks

are selected instead of globally optimal ones. Messy genetic algorithms (mGAs) were designed to deal with

these problems by encoding the string position (locus) along with its value (allele). This gives a messy

genetic algorithm the ability to search for the \true" building blocks of the problem and create tighter

linkage for those genes than a �xed position encoding would allow (46). The mGA encoding scheme also

allows under-speci�ed and over-speci�ed strings to exist in the population. Under-speci�ed strings don't have

an allele de�ned for every locus and are evaluated with the aid of a locally optimal competitive template that

supplies values for the unspeci�ed genes. Over-speci�ed strings contain multiple alleles speci�ed at the same

locus and are processed in a left-to-right fashion which sets the gene to the value encountered �rst. The

desire to create and manipulate superior building blocks is the motivation behind messy genetic algorithms

(45, 45, 44).

B.4.1 Messy Genetic Algorithm Operators. Messy GAs use variations of the same genetic operators

used by simple GAs. In the few implementations of mGAs that exist (45, 46, 44, 77), tournament selection has

been used instead of proportional or rank-based selection because of its desirable performance characteristics

(45:50)(26, 42). The tournament selection operator also has a thresholding mechanism added to it which

ensures that strings have a number of positions in common before competition is allowed (44:424{427).

Crossover is replaced by a combined cut-and-splice operator that works on variable length strings. As the

names suggest, cut divides a string into two smaller pieces and splice concatenates two strings to form a

single, longer string. A mutation operator that can change a gene's value or its position has been described

but unused in any mGA implementations (46:504).

Messy GAs employ a di�erent initialization strategy compared to SGAs. The main processing loop of

an mGA is composed of primordial and juxtapositional phases. During partially enumerative initialization

(PEI), exactly one copy of each possible building block of the speci�ed size (k) is generated. Thus, the initial

population size for a messy GA is generally quite large (2k
�
l
k

�
) (46:420). The primordial phase serves two

basic purposes: enrich the population with above average building blocks and reduce the population to a

size that can be e�ciently and e�ectively processed by the juxtapositional phase. Tournament selection, the

78



only active operator during the primordial phase, �lls the population with above average building blocks,

then periodically the population size is halved. No additional �tness evaluations are required during the

primordial phase. The juxtapositional phase is most similar to the main processing loop of a simple GA

(46:506). Cut-and-splice and any other genetic operators are applied, �tness evaluations are performed on

the newly created strings, and tournament selection bolsters the next generation with highly �t solutions.

A pseudo algorithm for messy GAs is shown in Figure 44.

1. perform partially enumerative initialization
evaluate �tness of all population members

2. for i = 1 to the maximum number of primordial generations
perform tournament selection
if (a suitable number of generations have transpired) then

reduce the population size
end if

end loop
3. for i = 1 to the maximum number of juxtapositional generations

perform cut-and-splice
perform other operators (currently not used)
evaluate �tness of all population members
perform tournament selection

end loop

Figure 44. Pseudo Algorithm for Messy GAs

B.4.2 Messy Genetic Algorithm Parameters. The major parameter settings associated with messy

GAs are population size, cut-and-splice probabilities, and a schedule for reducing the population size. Initial

population size can be calculated once the string length and block size have been determined. String length

is simply a function of the encoding used, but block size is a problem dependent quantity that may be

di�cult to estimate. The �nal population size at the end of the primordial phase is even less quanti�able!

The splice probability is consistently set to 1.0 with the following rationale: the primordial phase ends with

a population of optimal building blocks which should only require assembly to form a complete string that

is a near-optimal solution (45:25). The chosen cut probability is scaled by the current length of a string so

that longer strings are more likely to be cut than shorter strings. The schedule for reducing population size

during the primordial phase typically allows for two or three generations of enrichment followed by cutting

the population in half (46:505). No theoretical or empirical work has been accomplished to provide any

guidance for �nal primordial population size, cut probability, or population reduction schedules for messy

GAs.
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B.4.3 Mathematical Theory of How (Why) Messy GAs Work. The Schema Theorem (Equation 18)

is directly applicable to messy genetic algorithms. The rationale for messy genetic algorithms follows from

the theorem's interpretation: \short, low-order, above-average schemata receive exponentially increasing

trials in subsequent generations." If the building blocks of a problem aren't encoded as short, low-order

schemata then crossover and mutation will disrupt the formation of those building blocks.

For problems using a �xed encoding, where the identi�cation of building blocks is prohibitive or im-

possible, Goldberg has calculated the normalized expected de�ning length ( h�i
l+1

) for k-sized building blocks

(Equation 19). The normalized expected de�ning length is a measure of the mean length of the schemata

that make up the building blocks of a randomly encoded problem. The interpretation is that an arbitrary

encoding is highly unlikely to establish tight linkage for the building blocks of a problem (46:498{499).

h�i

l + 1
=
k � 1

k + 1
(19)

Messy genetic algorithms take advantage of the Schema Theorem by searching for both the de�ning

positions and gene values of the building blocks using PEI and the primordial phase. Then the juxtapositional

phase of the messy GA starts with \short, low-order, above-average" schemata that are also \short, low-order,

above-average" building blocks!

B.4.3.1 Complexity Analysis. Because of the partially enumerative initialization (PEI), the

time complexity of messy GAs is O(lk). This compares unfavorably with the rest of the algorithm which is

only O(l log l) (44:420{422). Space complexity remains unchanged from simple genetic algorithms. However,

the constant term is generally larger and the population size (n) is much larger! As is the case with simple

genetic algorithms, the time complexity of the evaluation function usually dominates that of the control

sequence.

B.5 Fast Messy Genetic Algorithm (fmGA)

The advantage messy GAs have over simple GAs is the ability to create tightly linked building blocks

for the optimization of deceptive problems. The disadvantage associated with this better processing is the

time complexity of the initialization phase which dominates the mGA algorithm (44:422). Fast messy GAs

are a messy GA variant designed to reduce the complexity of the initialization phase, and thus the overall

algorithm time and space complexity (43:59).

B.5.1 Fast Messy Genetic Algorithm Operators. PEI and the selection-only primordial phase of

mGAs are replaced by probabilistically complete initialization (PCI) and a primordial phase consisting of
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selection and building block �ltering (BBF) in fmGAs. PCI and BBF are an alternate means of providing

the juxtapositional phase with highly �t building blocks (43:59{61).

PCI is used to create an initial population whose size is equivalent to the population size at the end

of the primordial phase of mGAs. The length of these strings is typically set to l� k. The primordial phase

then alternately performs several tournament selection generations to build up copies of highly �t strings

followed by BBF to reduce the string length toward the building block size (k). Building block �ltering is a

simple process that randomly deletes several genes from a string. The juxtapositional phase is the same as

in mGAs. A pseudo algorithm for fast messy GAs is shown in Figure 45.

1. perform probabilistically complete initialization
evaluate �tness of all population members

2. for i = 1 to the maximum number of primordial generations
perform tournament selection
if (a building block �ltering event is scheduled) then

perform building block �ltering
evaluate �tness of all population members

end if
end loop

3. for i = 1 to the maximum number of juxtapositional generations
perform cut-and-splice
perform other operators (currently not used)
evaluate �tness of all population members
perform tournament selection

end loop

Figure 45. Pseudo Algorithm for Fast Messy GAs

B.5.2 Fast Messy Genetic Algorithm Parameters. Fast messy GAs need a building block �ltering

and thresholding schedule instead of the population size reduction schedule required by mGAs. Goldberg

provides formulas for deriving schedules (43:60{61), but the formulas contain additional parameters and no

guidance is given for choosing their values. The remainder of mGA parameters are used by fmGAs as well.

B.5.3 Mathematical Theory of How (Why) Fast Messy GAs Work. Fast messy GAs are governed

by the Schema Theorem (Equation 18) just like mGAs. The di�erence relates to how the population of

\good" building blocks is created for processing by the juxtapositional phase. Goldberg performs a detailed

analysis to show that a much smaller initial population of long strings (PCI) can be manipulated (through

BBF) to create a population of \good" building blocks just as e�ectively as PEI and the primordial phase

of mGAs (43:60{61).
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B.5.3.1 Complexity Analysis. Reducing the overall time complexity of the algorithm is the

main reason for switching from mGAs to fmGAs. PCI and BBF result in a time complexity of O(l log l)

for initialization and the primordial phase combined (43:61). Thus, the design goal has been met|fmGAs

exhibit better e�ciency than mGAs (O(l log l) vs O(lk)) and preserve their e�ectiveness. Space complexity

for fmGAs remains unchanged from SGAs and mGAs (O(nl)) and populations can be sized much smaller

than mGAs. Again, the time and space complexities of the evaluation function usually dominate those of

the control sequence.
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Appendix C. Background on Parallel Computing

This appendix contains background material on parallel computing, most of which has been presented

in previous AFIT theses, Merkle (77). Two distinct but interdependent aspects of parallel computing are

presented. Section C.1 considers issues related to the design and implementation of parallel computer

architectures. Section C.2 examines the design and implementation of algorithms which exploit application

parallelism.

C.1 Parallel Architectures

The vast majority of computer architectures in common use are based on the organization proposed by

von Neumann in the 1940s, in which a single memory area is used to store both instructions and data. Such

architectures are referred to as von Neumann-based. Von Neumann-based parallel processing systems can

be categorized as Multiple Instruction Multiple Data (MIMD), Single Instruction Multiple Data (SIMD),

Multiple Instruction Single Data (MISD), or Single Instruction Single Data (SISD). A special case of the

MIMD category is the Single Program Multiple Data (SPMD) paradigm. Other architectures exist, but

their use is primarily limited to research. The majority of commercially available parallel architectures are

either SIMD or MIMD.

During any given instruction cycle, all of the processors of a SIMD architecture execute the same

instruction, using di�erent data. In order for the instructions to be applicable to the data on all the

processors, they must be more general and therefore less powerful. As a result, the individual processors have

small instruction sets, making them relatively inexpensive, so that it is cost e�ective for SIMD architectures

to include large numbers of processors. SIMD architectures with 64,000 processors are fairly common. The

tradeo� is that for a �xed amount of memory, there is less memory per processor.

In contrast, the processors of a MIMD architecture act independently, and can take advantage of

more powerful instructions. Each processor is more expensive, so that MIMD architectures are typically

implementedwith fewer processors than SIMD architectures. This means that each processor can be allocated

more memory.

A single processor and its allocated memory are together called a node. The relative computational

power of each node in a parallel architecture is often referred to as the granularity of the architecture. Most

SIMD architectures are categorized as �ne grained because they have a large number of nodes, each of

which has a simple processor with a small amount of memory. In contrast, most MIMD architectures are

categorized as coarse grained because they have a relatively small number of nodes, each with a powerful

processor and signi�cant memory.
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Figure 46. 4� 4 Mesh Interconnection Network

Some architectures allow processors to access memory allocated to other processors, or simply allow

all the processors to access a single global memory. Such architectures are referred to as shared memory

architectures. Processors within such architectures can communicate data by storing it in memory which is

accessible to the receiving processor. Most SIMD architectures are in this category. Most MIMD architec-

tures, on the other hand, are distributed memory, meaning that processors cannot access memory allocated

to other processors. These architectures are also referred to as message passing, because the processors

communicate via communication links. This type of communication is generally very slow relative to other

processor activities.

Parallel architectures can also be categorized according to their interconnection topology, or network,

which de�nes the other processors to which each processor can communicate data. A common interconnec-

tion topology for SIMD architectures is a 2-D mesh, in which the processors are arranged, logically if not

physically, in a two dimensional array. A 4� 4 mesh is shown in Figure 46. Mesh interconnection networks

allow each processor to communicate data to each of the four processors at its sides. Well known examples

of such systems are the Connection Machine, which is manufactured by Thinking Machines, Inc., and the

Paragon, which is manufactured by Intel.

A common interconnection topology for MIMD architectures is a hypercube. Hypercube architectures

have a dimension, N , and have 2N processors. A hypercube of dimension 4 is shown in Figure 47. Each

processor is directly connected to, and can communicate data to N other processors in a single step. Any

processor can communicate data to any other processor in no more than N steps. One of many examples of a

commercially available hypercube architecture is Intel Corporation's parallel supercomputer, the iPSC/i860.
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Figure 47. Dimension 4 Hypercube Interconnection Network

C.2 Parallel Algorithms.

Software development for parallel architectures is fundamentally di�erent than for sequential architec-

tures (9). The primary question in developing parallel software is whether to design parallel algorithms and

implement them directly, or to implement sequential algorithms and then parallelize them. For most cases in

which there is no sequential software predecessor, and even in some cases where there is such a predecessor,

the �rst approach likely results in better performance.

Several algorithm properties can lead to performance improvements when the algorithms are imple-

mented in parallel. The two most common such properties are data parallelism and control parallelism(73).

The former describes a situation in which an algorithm processes multiple data items in the same way, and

the actions taken for any particular data item do not depend on the results of processing other data items.

The latter is present when two distinct operations on the same data do not depend on each other. Another

form of parallelism, sometimes referred to as \trivial" parallelism, is present when two separate activities,

which share neither control nor data, can be executed simultaneously.

Chandy and Misra propose an architecture independent method for the description of an algorithm(9).

A UNITY (Unbounded Nondeterministic Iterative Transformations) program describes the requirements for

a process. It does not specify the order of operations or the mapping of operations to processors. Thus, a

UNITY programmay be mapped to any architecture, whether it be sequential, asynchronous shared-memory,

or distributed memory. The description of a mapping describes how the UNITY program is executed on the

target architecture. Mappings for particular classes of architectures exhibit common characteristics. The

target architecture in this study is a hypercube, which is a distributed memory (DM) system. Chandy and

Misra describe DM systems formally as consisting of a �xed set of processors, a �xed set of communication

channels, and a memory for each processor(9:83). As such, a mapping to such an architecture must

� allocate each statement in the program to a processor;

� allocate each variable to either a memory or a channel;

� specify the control ow for each processor;
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� allocate at most one variable, which is of type sequence, to each communication channel;

� be such that a variable which is allocated to a channel is referenced in statements which are allocated

to exactly two processors.

Furthermore, the statements allocated to one of the processors which reference a channel variable may only

modify the variable by appending an item to the sequence. They may only do so when the sequence is

of length less than a constant bu�er size. Finally, the statements allocated to the other processor which

references the channel variable may only modify the variable by removing the �rst item in the sequence.

They may only do so when the length of the sequence is greater than zero.
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Appendix D. PHGA Operation

Operation of PHGA is similar to the other AGCT binary GAs based on GENESIS. The only addition

parameter is the number of nodes, which is entered at the command line. A sample input �le is shown in

Figure 48.

Traditionally, the GENESIS engine has expected an input �le either named in or in.somethingwhere

something is an unique �le extension. If the run is to us the �le named in, then no additional arguments

are extended at the command line, i.e.

ga.energy

and no other arguments on the command line. If in.something is to be used as the input parameter �le,

then just the extension is entered following the executable name, i.e.

ga.energy something

where it must be the second item on the command line. Of course, standard UNIX command options can

be included like & to run the process in the background and > to redirect standard output to a �le or null

output, /dev/null.

In a parallel environment the above option is unusable because additional parameters must be speci�ed

and the order varies from platform to platform. In response to these problems, two tokens, psga param

and psga default were used. The �rst token psga param indicates to the program that the next argument

indicates the �le to use for input. The second token psga default indicates to the program use the GENESIS

default input �le, in.

For most MPI implementations, a script mpirun is used to hide machine dependent start-up procedures.

A switch -np followed by an integer, indicates the number of nodes to used. An exception is the Intel Paragon

internal version, available with Intel R1.04 OS. Here, no script is used, rather a switch -sz followed by an

integer value indicates how many nodes to run. Examples follow:

mpirun -np 4 psga.energy psga param 2.10.24
psga.energy -sz 4 psga.energy psga param 2.10.24

the �rst is the mpirun version while the second is the Paragon internal version. Both are using four nodes and

using input �le in.2.10.24. With the Paragon version, standard UNIX command options can be included

like & to run the process in the background and > to redirect standard output to a �le or the bit bucket,

/dev/null.
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Experiments = 1

Total Trials = 500

Population Size = 20

Structure Length = 240

Crossover Rate = 0.65

Mutation Rate = 0.005

Generation Gap = 1.0

Scaling Window = 1

Report Interval = 1

Structures Saved = 1

Max Gens w/o Eval = 10

Dump Interval = 0

Dumps Saved = 0

Options = ycel

Number of Peaks = 1.0

Minimization Prob = 1.0

Replacement Prob = 1.0

Random Seed = 987654321

Rank Min = 1.5

Figure 48. Sample input parameter �le for PHGA
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Appendix E. Genocop-III

This appendix provides details of the most recent implementation of Michalewicz's Genocop (GEnetic

algorithm for Numerical Optimization of COnstrained Problems). GENOCOPIII is the new version of this

system for handling Numerical Optimization of Problems with Linear and Non-Linear Constraints. It has

been completely rewritten and incorporates no code from previous versions of the system. This version is

written in ANSI-C and should compile on any system supporting the ANSI standard. The general algorithm

is detailed in Section E.1. Input parameters are discussed in Section E.2. Genocop III has a much richer set

of operators than \classical" GAs which are discussed in Section E.3

E.1 Algorithm

Genocop III combines the characteristics from all aspects of the Evolutionary Computation and other

stochastic techniques. The general algorithm is presented in Figure 49. It features a unique repair method

incorporated in the search population evaluation, Figure 50.

Procedure Genocop III

begin

t 0, \t is number of generations"
initialize Ps(t)
initialize Pr(t)
evaluate Ps(t)
evaluate Pr(t)
while (not termination-condition) do
begin

t t+ 1
select Ps(t) from Ps(t � 1)
alter Ps(t)
evaluate Ps(t)
if t mod k = 0 then
begin

alter Pr(t)
select Pr(t) from Pr(t� 1)
evaluate Pr(t)

end

end

end

Figure 49. The structure of Genocop III
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procedure evaluate Ps(t)
begin

for each ~s 2 Ps(t) do
if ~s 2 F \feasibility set"
then evaluate ~s (as f(~s)) else
begin

select ~r 2 Pr(t)
generate ~z 2 F
evaluate ~s (as f(~z))
if f(~r) > f(~z) then replace ~r by ~z in Pr
replace ~s by ~z in Ps with probability pr

end

end

Figure 50. Evaluation of population Ps in Genocop III

E.2 Input Parameters

The input parameters for Genocop-III can be divided into the following classes: Static, Domain Con-

straints 1 (DC), Linear Constraints (LC), and Operator Probability Distribution (OD). Additionally, we can

say that the static constraints and operator probability distribution are artifacts of the algorithm domain

while the domain and linear constraints are artifacts of the application domain. Since the objective is to

e�ect the algorithm with respect to a speci�c application, only algorithm domain parameters will be study

in this experiment set.

The static input parameters for Genocop-III are presented in table 25. The operator probability

distribution is a sequence of real numbers indicating the relative frequency for each operator. If operator

frequency control is �xed, these numbers are normalized by the algorithm. However, if operator frequency

control is adaptive, operators with nonzero values are assigned a starting relative frequency midway between

the upper and lower bounds de�ned in the header �le genocop.h, while those with a zero value are assigned

a relative frequency of zero.

Of the parameters listed in Table 25, several are essentially constant or experiment dependent. Theses
are:

� Total number of variables

� Number of nonlinear equality constraints

� Number of nonlinear inequality constraints

� Number of linear inequality constraints

� Number of linear inequality constraints

1Here the phrase \Domain Constraints" is used in a context more limited than normally used in compute science, speci�cally,
the allowable range of speci�ed variables. If a domain constraint is not de�ned for a variable, it defaults to the architecture
dependent range for IR
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Table 25. Static Input Parameters
Name Description Values

Number Variables Total number of variables IN [ 0

Number NLE Number of nonlinear equality constraints IN [ 0

Number NLIE Number of nonlinear inequality constraints IN [ 0

Number LC Number of linear inequality constraints IN [ 0

Number DC Number of variable constraints IN [ 0

Ref Pop Size Size of reference population IN

Search Pop Size Size of search population IN

Number Operators Number of operators IN

Total Evaluations Number of total evaluations IN

Reference Period Period of evaluation of reference pop IN

Reference O�spring Number of o�spring for each ref pop eval IN

Select Reference Pt Selection of ref point to repair search point 0=random, 1=ordered

Repair Method Selection of repair method for search pop 0=random, 1=deterministic

Replace Prob Prob. of replacement for search pop [0.0,1.0]

Reference Init Type Init method for reference population 0=single, 1= multiple

Search Init Type Init method for search population 0=single, 1= multiple

Object Type Objective function type 0=max, 1=min

Test Case Test case number IN

Epsilon EPSILON for equalities IR

Seed1 Random number seed 1 0 � iSeed1 � 31328

Seed2 Random number seed 2 0 � iSeed2 � 30081

Frequency Mode Operator frequency control 0=�xed, 1=adaptive

� Number of variable constraints

� Objective function type

� Init method for reference population

� Init method for search population

� Test case number

� Random seeds (1 and 2 )

In addition, the parameter EPSILON only applies to nonlinear equalities which are not at this time

applicable to the REGAL approach, therefore in it is ignored. This leave the static parameters indicated in

Table 10.

E.3 Operators

GENOCOP{III as available form Michalewicz, uses the 10 operators listed below. Each is explained
in greater detail in the following sections.

1. Whole arithmetical crossover

2. Simple arithmetical crossover

3. Whole uniform mutation
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4. Boundary mutation

5. Non-uniform mutation

6. Whole non-uniform mutation

7. Heuristic crossover

8. Gaussian mutation

9. Pool recombination operator

10. Scatter search operator

E.3.1 Whole arithmetical crossover. Arithmetic crossover, produces ~z = a~x+(1�a)~y , from parents

~x and ~y. Always produces a feasible solution (for 0 � a � 1) in convex search spaces. Applied to all genes.

E.3.2 Simple arithmetical crossover. Same as above except crossover is only applied following a

single point. Closest analogy in this implementation to single point crossover in GENESIS.

E.3.3 Whole uniform mutation. Single parent ~x = (x1; :::; xk; ::::xn) produces a single o�spring

~x
0

= (x1; :::; x
0

k; :::xn) where x
0

k is a random value (uniform probability distribution) from the range of

element k. Discussion on this and the next two mutation operators is available in Michalewicz, Logan, and

Swaminathan (80)

E.3.4 Boundary mutation. Same as whole uniform mutation except x
0

k is either left(k) or right(k)

with uniform probability. .

E.3.5 Non-uniform mutation. This unary operator is responsible for �ne tuning of the system.

xt+1k =

8<
: xtk +4(t; r(k)� xk) if a random binary digit is 0

xtk �4(t; xk � l(k)) if a random binary digit is 1
(20)

for k = 1; : : : ; n. The function 4(t; y) returns a value in the range [0; y] such that the probability

of 4(t; y) being close to 0 increases as t increases (t is the evaluation number). This property causes this

operator to search the space uniformly initially (when t is small), and very locally at later stages. In

experiments reported by Michalewicz et al. (1994), the following function was used:

4 (t; y) = y � r � (1�
t

T
)b; (21)

where r is a random number from [0::1], T is the maximal evaluation number, and b is a system parameter

determining the degree of non{uniformity.
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E.3.6 Whole non-uniform mutation. Applies non-uniform mutation to the whole vector. A code

review reveals that some components may not be mutated, while others may be mutated more than once.

E.3.7 Heuristic crossover. An interesting variation along this line is the heuristic crossover operator

proposed by Wright (113); this crossover uses values of the objective function in determining the direction of

the search, and it produces only one o�spring. The operator generates a single o�spring ~z from two parents,

~x and ~y according to the following rule:

~z = r � (~x� ~y) + ~x (22)

where r is a random number between 0 and 1, and the parent ~x is not worse than ~y, i.e., f(~x) � f(~y) for

maximization problems and f(~x) � f(~y) for minimization problems.

E.3.8 Gaussian mutation. The most popular mutation operator is Gaussian mutation, which

modi�es all components of the solution vector ~x = hx1; : : : ; xni by adding a random noise:

~xt+1 = ~xt +N (0; ~�) (23)

where N (0; ~�) is a vector of independent random Gaussian numbers with a mean of zero and standard devi-

ations ~�. Such a mutation is used in evolution strategies (B�ack et al., 1991) and evolutionary programming

(Fogel, 1995). (One of the historical di�erences between these techniques lies in adjusting vector of standard

deviations ~�).

E.3.9 Pool recombination operator. Picks bits from a random parent selected from a set and �lls

up the o�spring vector. Returns index of the worst parent in the set. (from code comments)

E.3.10 Scatter search operator. The scatter search operator involves computing the centroid of

group of parents and moving from the worst individual beyond the centroid point. More precisely, the

operator selects k > 2 parents (set J), determines the best and the worst individual within the selected

group (~b and ~w, respectively), computes the centroid ~c of the selected group with removed worst individual:

~c =
X

~xi2J�~w

~xi=(k � 1) (24)

and computes the `reected point' ~y (i.e., the o�spring) obtained from the worst one:

~y = ~c + (~c� ~w) (25)
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This operator embodies ideas originally presented, according to Michalewicz(81), by Glover in 1977 (38).

The appeal of the scatter search in a GA is the concept an orgy, where the resulting o�spring contains genetic

material from more than two parents.
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Appendix F. Statistical Methods

The chapter discusses statistical methods used in this research.

F.1 Analysis of Variance (ANOVA)

F.1.1 Single Factor Factorial Design . Suppose we have a treatments or di�erent levels factors we

wish to compare. Each of the n observed responses from each of the a treatments is a random variable. The

observation can be described as a linear statistical model:

yij = �+ �i + �ij

8<
: i = 1; 2; : : : ; a

j = 1; 2; : : :; n
(26)

where yij is the (ij)th observation, � is a parameter common to all treatments called the overall mean, �i is a

parameter unique to the ith treatment called the treatment e�ect, and �ij is a random error component. For

hypothesis testing, the model errors are assumed to be normally independently distributed random variables

with mean zero and variance of �2.

Actually, the statistical model, Equation 26, describes two di�erent situations with respect to the

treatment e�ects. First the treatments could have been selected by the experimenter. This is a �xed

e�ects model. The conclusions derived from hypothesis testing apply only to the treatment levels in the

analysis. They can't be extended to treatments not explicitly considered. Alternatively, the treatments

could be random samples from a larger population of treatments. This is a random e�ects model. The �i are

random variables and knowledge about the particular ones investigated are relatively useless. Rather, the

experimenter test hypothesis about the variability of �i and tries to estimate this variability.

Initially, consider an experiment where a single factor is tested at a levels. In addition, there are n

replicates of each treatment levels. N is the total number of experiments and is equal to
Pa

i=1 ni. The term

analysis of variance is derived from a partitioning of total variability into its component parts. The total

corrected sun of squares

SST =

aX
i=1

nX
j=1

(yij � �y::)
2

(27)

is used as a measure of overall variability in the data. Montgomery (87) shows how the total variability, as

measured by SST can partitioned into a sum of squares of di�erences between the treatment averages and

the grand average, plus a sum of squares di�erence of the di�erence of observations within treatments from

the treatment average. The di�erence between the observed treatment averages and the grand average is

a measure of the di�erence between the treatment means, whereas the di�erence of observations within a
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treatment from the treatment average can be due to random error (or some other factor). Thus we have

SST = SSTreatments + SSE (28)

where SSTreatments is called the sum of squares due to treatments and SSE is the sum of squares due to

error.

The formal test of the hypothesis of no di�erence in treatment means (H0 : �1 = �2 = : : : = �a) or

equivalently (H0 : �1 = �2 = : : : = �a = 0). Montgomery shows via Cochran's Theorem (87:59) that if the

null hypothesis of no di�erence in treatment means is true, the ratio

F0 =
SSTreatment=(a� 1)

SSE=(N � a)
=
MSTreatments

MSE
(29)

is distributed as F with a� 1 and N � a degrees of freedom. Thus we reject H0 if

F0 > F�; a�1; N�a (30)

where F0 is computed from Equation 29. ANOVA test are usually summarized in table form, Table 26. To

eliminate rounding error involved with averages, the sum of square terms are calculated as follows:

SST =

aX
i=1

nX
j=1

y2ij �
y2ij

N
(31)

SSTreatments =

aX
i=1

y2i:
n
�
y2::
N

(32)

SSE = SST � SSTreatments (33)

The dot notation used with respect to the y variables is de�ned in Equations 34 and 35.

Table 26. Analysis of Variance Table for the Single-Factor, Fixed E�ects Model
Source of Variation Sum of Squares DOF Mean Square F0

Between Treatments SSTreatments a � 1 MSTreatments F0 =
MSTreatments

MSE

Error (within treatments) SSE N � a MSE
Total SST N � 1

yi: =

nX
j=1

yij ; �yi: = yi:=n i = 1; 2; : : : ; a (34)
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y:: =

aX
i=1

nX
j=1

yij; �y:: = y::=N (35)

F.1.2 Two Factor Factorial Design . The single factor analysis shown is the previous section is

expanded to encompass multiple factors. The section details procedures for ANOVA of a two factor design.

Here there are a levels of factor A and b levels of factor B. The linear statistical model for this design is

yijk = �+ �i + �j + (��)ij + �ijk

8>>><
>>>:

i = 1; 2; : : : ; a

j = 1; 2; : : : ; b

k = 1; 2; : : : ; n

(36)

where � is the overall mean e�ect, �i is the e�ect of the ith level of the �rst factor A, �j is the e�ect of the

jth level of the second factor B, (��)ij is the interaction between �i and �j , and �ijk is the random error

component. Hypothesis tests, are equality of A treatment levels

H0 : �1 = �2 = : : : = �a = 0

H1 : 9 �i 6= 0
(37)

, equality of B treatment levels

H0 : �1 = �2 = : : : = �b = 0

H1 : 9�i 6= 0
(38)

, and A and B treatment interaction

H0 : (��)ij = 0 8 i; j

H1 : 9 �i 6= 0
(39)

The Table 27 shows the ANOVA for this model. For each test, the H0 hypothesis

Table 27. Analysis of Variance Table for the Two-Factor, Fixed E�ects Model
Source of Variation Sum of Squares DOF Mean Square F0

A treatments SSA a� 1 MSA = SSA
a�1

F0 =
MSA
MSE

B treatments SSB b� 1 MSB = SSB
b�1

F0 =
MSB
MSE

Interaction SSAB (a� 1)(b� 1) MSAB = SSAB
(a�1)(b�1)

F0 =
MSAB
MSE

Error SSE ab(n� 1) MSE = SSE
ab(n�1)

Total SST abn� 1
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The terms are computed as follows:

SST =

aX
i=1

bX
j=1

nX
k=1

y2ijk �
y:::2

abn
(40)

SSA =

aX
i=1

y2i::
bn
�
y2:::
abn

(41)

SSB =

aX
j=1

y2:j:

an
�
y2:::
abn

(42)

SSAB = SSSubtotals � SSA � SSB (43)

SSE = SST � SSSubtotals (44)

SSSubtotals =

aX
i=1

bX
j=1

y2ij:

n
�
y2:::
abn

(45)

yi:: =

bX
j=1

nX
k=1

yijk; �yi:: = yi::=bn i = 1; 2; : : : ; a (46)

y:j: =

aX
i=1

nX
k=1

yijk; �y:j: = y:j:=an j = 1; 2; : : : ; b (47)

yij: =

nX
k=1

yijk; �yij: = yij:=n
i = 1; 2; : : : ; a

j = 1; 2; : : :; b
(48)

y:: =

aX
i=1

bX
j=1

nX
k=1

yij ; �y::: = y:::=abn (49)

F.2 Kruskal-Wallis H Test.

The Kruskal-Wallis H Test determines \whether or not the means from k independent samples are equal

when the populations [cannot be assumed to be] normal"(1:544). The algorithm for the Kruskal-Wallis test

is given at Figure 51, in which n is the total number of observations, k is the number of samples, and Ri is

the rank of observation i within the population. The Kruskal-Wallis H Test is used throughout as a means

of verifying results from ANOVA.
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Suppose we have k independent samples from k populations. We wish to test the null hypothesis

H0 : the samples are from identical populations

against the alternative hypothesis

H1 : the populations are not identical

at the � level of signi�cance.

1. Compute h. Calculate

h =
12

n(n+ 1)

X
i=1

k
R2

i

ni
� 3(n+ 1)

2. Accept or reject H0. If h > �2k�1;�, reject H0; otherwise accept H0.

Figure 51. Kruskal-Wallis H Test Algorithm
(1)
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